期刊文献+

网格图的并图P(n_1,n_2,…,n_m)的奇优美性和奇强协调性

Odd Gracefulness and Odd Strongly Harmoniousness on the Planer Mesh P(n_1,n_2,…,n_m)
下载PDF
导出
摘要 通过构造方法,给出了平面网格图的并图P(n1,n2,…,nm)的奇优美标号和奇强协调标号以及其k-优美标号和k-强协调标号.从而证明这类图是奇优美图和奇强协调图. This paper gives the odd graceful labelling, odd strongly harmonious labelling, k-graceful labeling and k- strongly harmonious labelling of the graphs P(n1,n2,...,nm). Then we prove that the graph is odd graceful graph and odd strongly harmonious graph.
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2014年第3期30-33,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省自然科学基金(0511013800) 河南省教育厅自然科学研究资助项目(2009B110001)
关键词 奇优美标号 奇强协调标号 k-优美标号 k-强协调标号 odd graceful labelling odd strongly harmonious labelling k-graceful labeling k-strongly harmonious labelling
  • 相关文献

参考文献12

  • 1GALLIAN A. A Dynamic Survey of Graph Labelling [J]. The Electronic Journal of Combinatorics,2000,6 : 10-18.
  • 2MA Kejie. Graceful Graph [M]. Peking: Peking University Press, 1991.
  • 3RINGEL G. Problem 25 in Theory of Graphs and its Applieation[J]. Proc Symposium Smoleniee, 1963 (1) :162-170,.
  • 4Rosa A. On Certain Valuations of Vertices of a Graph[M]. Rome: Proc Internat Sympos, 1966.
  • 5Golomb S W. How to Number a Graph[M]. New York:Academic Press,1972:23-37.
  • 6GALLIAN A. A Guide to the Graph Labelling Zoo[J]. Discrete Mathematics, 1994,49:213-229.
  • 7KATHIE SAN KM. Two Classes of Graceful Graphs[J]. Ars Combinatioria,2000,55: 129-132.
  • 8Frank Hsu D. Harmonious Labellings of Windmill Graphs and Related Graphs[J]. Journal of Graph Theory, 1982,6 (1) :85-87.
  • 9梁志和.关于图标号问题[J].河北师范大学学报(自然科学版),2000,24(3):300-303. 被引量:27
  • 10严谦泰.积图P_n×P_m的奇优美性和奇强协调性[J].系统科学与数学,2010,30(3):341-348. 被引量:28

二级参考文献20

  • 1杜之亭,孙惠泉.n·C_(2P)的优美性[J].北京邮电大学学报,1994,17(3):85-89. 被引量:9
  • 2康庆德.积图P_m×C_(4n)的k-优美性[J].Journal of Mathematical Research and Exposition,1989,9(4):623-627. 被引量:8
  • 3陈淑贞.关于回路的r-冠的优美性[J].海南师范学院学报:自然科学版,1997,10(1):29-31.
  • 4Gallian A. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics, 2000, 12: 1-95.
  • 5MA Kejie. Graceful Graph. Peking: Peking University Press, 1991.
  • 6Ringel G. Problem 25 in theory of graphs and its application. Proc. Symposium Smolenice, Smolenice, 1963.
  • 7Rosa A. On certain valuations of vertices of a graph: Theory of Graphs. Proc. Internat. Sympos., Rome, 1966.
  • 8Golom B S W. How to number a graph: Graph Theory and Computing. Academic Press, New York, 1972.
  • 9Gallian A. A guide to the graph labeling zoo. Discrete Mathematics, 1994, 49:213-229.
  • 10Kathie San Km. Two classes of graceful graphs. Ars. Combinatioria, 2000, 55: 129-132.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部