期刊文献+

Global Well-Posedness of Classical Solutions with Large Initial Data to the Two-Dimensional Isentropic Compressible Navier-Stokes Equations

Global Well-Posedness of Classical Solutions with Large Initial Data to the Two-Dimensional Isentropic Compressible Navier-Stokes Equations
原文传递
导出
摘要 We establish the global existence and uniqueness of classical solutions to the Cauchy problem for the two-dimensional isentropic compressible Navier-Stokes equations with smooth initial data under the assumption that the viscosity coefficient μ is large enough. Here we do not require that the initial data is small.
出处 《Journal of Partial Differential Equations》 2014年第2期143-157,共15页 偏微分方程(英文版)
基金 Acknowledgments This work was partially supported by National Natural Science Foundation of China (Grant No. 11001090), the Fundamental Research Funds for the Central Universities (Grant No. 11QZR16).
  • 相关文献

参考文献2

二级参考文献29

  • 1ZHAO WenJing1,& DU DaPeng2 1School of Mathematics Science,Fudan University,Shanghai 200433,China,2Institution of Mathematics,Fudan University,Shanghai 200433,China.Local well-posedness of lower regularity solutions for the incompressible viscoelastic fluid system[J].Science China Mathematics,2010,53(6):1521-1530. 被引量:2
  • 2HUANG XiangDi 1 & XIN ZhouPing 2, 1 Department of Mathematics, University of Science and Technology of China, Hefei 230026, China 2 Department of Mathematics, The Chinese University of Hong Kong, Hong Kong, China.A blow-up criterion for classical solutions to the compressible Navier-Stokes equations[J].Science China Mathematics,2010,53(3):671-686. 被引量:14
  • 3KONG DeXing 1 , LIU KeFeng 2 & WANG YuZhu 3, 1 Department of Mathematics, Zhejiang University, Hangzhou 310027, China,2 Department of Mathematics, University of California at Los Angeles, CA 90095, USA,3 Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200248, China.Global existence of smooth solutions to two-dimensional compressible isentropic Euler equations for Chaplygin gases[J].Science China Mathematics,2010,53(3):719-738. 被引量:4
  • 4Lingyu Jiang,Yidong Wang.On the blow up criterion for the 2-D compressible Navier-Stokes equations[J]. Czechoslovak Mathematical Journal . 2010 (1)
  • 5Yonggeun Cho,Hyunseok Kim.On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities[J]. manuscripta mathematica . 2006 (1)
  • 6Hideo Kozono,Yasushi Taniuchi.Limiting Case of the Sobolev Inequality in BMO,?with Application to the Euler Equations[J]. Communications in Mathematical Physics . 2000 (1)
  • 7V. A. Vaigant,A. V. Kazhikhov.On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscous fluid[J]. Siberian Mathematical Journal . 1995 (6)
  • 8Paolo Acquistapace.OnBMO regularity for linear elliptic systems[J]. Annali di Matematica Pura ed Applicata . 1992 (1)
  • 9Akitaka Matsumura,Takaaki Nishida.Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids[J]. Communications in Mathematical Physics . 1983 (4)
  • 10V. A. Solonnikov.Solvability of the initial-boundary-value problem for the equations of motion of a viscous compressible fluid[J]. Journal of Soviet Mathematics . 1980 (2)

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部