期刊文献+

用广义高阶导数刻画集值优化ε-严有效解 被引量:2

The characterizations of ε-strictly efficient solutions of set-valued optimization with generalized higher-order derivatives
下载PDF
导出
摘要 在实赋范线性空间中讨论了集值优化问题ε-严有效解的广义高阶导数型最优性条件.利用广义高阶切集,在没有任何凸性假设下,借助基泛函及ε-严有效解的性质,得到了集值优化问题ε-严有效解的广义高阶导数型的必要和充分条件. The generalized higher-order derivatives optimality conditions for ε -strictly efficient solutions of set-valued optimization problems is discussed in real normed spaces. By virtue of the generalized higher-order tangent sets introduced, without any convexity assumption, by employing the properties of basic functional and ε -strictly efficient element, necessary and sufficient conditions are obtained forε -strictly efficient solutions for set-valued optimization problems.
作者 余丽
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期35-39,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 江西省自然科学基金资助项目(20122BAB211004) 江西省教育厅科技项目(GJJ13696)
关键词 ε-严有效解 广义m-阶切导数 必要条件 充分条件 ε - strictly efficient solutions generalized m - higher-order contingent derivatives necessarycondition sufficient condition
  • 相关文献

参考文献3

二级参考文献12

  • 1YU P L.Cone convexity,cone extreme points and nondominated solutions in decision problems with mul-tiobjectives[J].JOTA,1974,14:319-377.
  • 2JEYAKUMAR V.A generalization of a minmax theorem of fan via a theorem of the alternative[J].JOTA,1986,48(3):525-533.
  • 3FRENK J B G,KASSAY G.On classes of generalized convex functions and lagrangian duality[J].JOTA,1999,102:315-343.
  • 4GIANNESSI F.Theorems of the alternative and optimality conditions[J].JOTA,1984,42(3):331-365.
  • 5LUC D T,SCHAIBLE S.Efficiency and generalized concavity[J].JOTA,1997,94(1):147-153.
  • 6LI Sheng-jie,YANG Xiao-qi,CHEN Guang-ya.Nonconvex vector optimization of set-valued mappings[J] ,JMAA,2003,283:337-350.
  • 7RONG Wei-dong,WU Yu-nan.ε-weak minimal solutions of vector optimization problems with set-valued maps[J].JOTA,2000,106(3):569-579.
  • 8YANG Xin-min,LI Duan,WANG Shou-yang.Nearly-subconvexlikeness in vector optimization with set-valued function[J].JOTA,2001,110(2):413-427.
  • 9CHEN Guang-ya,RONG Wei-dong.Characterizations of the Benson proper efficiency for nonconvex vector optimization[J].JOTA,1998,98(2):365-384.
  • 10CHENG Yong-hong,FU Wei-tao.Strong efficiency in a locally convex space[J].Math Meth Oper Res,1999,50:373-384.

共引文献39

同被引文献5

  • 1Aubin JP,Frankowska H.Set-valued Analysis[M].Basel:Birkhauser,1990.
  • 2Jahn J,Khan AA,Zeilinger P.Second-order Optimality Conditions in Set Optimization[J].Journal of Optimization Theory and Applications,2005,125(2):331-347.
  • 3Li SJ,Zhu SK,Teo KL.New Generalized Second-order Contingent Epiderivatives and Set-valued Optimization Problem[J].Journal of Optimization Theory and Applications,2012,152:587-604.
  • 4Li TY,Xu YH.Strictly Efficient Solutions of Vector Optimization Problems with Set-Valued maps[J].Asia-Pacific Journal of Operational Research,2007,24(6):841-854.
  • 5Li SJ,Teo KL,Yang XQ.Higher-order Optimality Conditions for Set-valued Optimization[J].Journal of Optimization Theory and Applications,2008,137(3):533-553.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部