摘要
在实赋范线性空间中讨论了集值优化问题ε-严有效解的广义高阶导数型最优性条件.利用广义高阶切集,在没有任何凸性假设下,借助基泛函及ε-严有效解的性质,得到了集值优化问题ε-严有效解的广义高阶导数型的必要和充分条件.
The generalized higher-order derivatives optimality conditions for ε -strictly efficient solutions of set-valued optimization problems is discussed in real normed spaces. By virtue of the generalized higher-order tangent sets introduced, without any convexity assumption, by employing the properties of basic functional and ε -strictly efficient element, necessary and sufficient conditions are obtained forε -strictly efficient solutions for set-valued optimization problems.
出处
《东北师大学报(自然科学版)》
CAS
CSCD
北大核心
2014年第2期35-39,共5页
Journal of Northeast Normal University(Natural Science Edition)
基金
江西省自然科学基金资助项目(20122BAB211004)
江西省教育厅科技项目(GJJ13696)
关键词
ε-严有效解
广义m-阶切导数
必要条件
充分条件
ε - strictly efficient solutions
generalized m - higher-order contingent derivatives
necessarycondition
sufficient condition