摘要
设Fq是q个元素的有限域,其中q是素数的幂,Fnq是Fq上n维向量空间,用[nm]q表示Gaussian系数,它可看做Fnq的m维子空间的个数.运用组合方法证明了几个已知的Gaussian系数恒等式,并给出几个新的Gaussian系数恒等式和它的组合方法证明.
Let Fq he a finite field with q elements, where q is a power of a prime and Fq be then-dimensional row vector space, and denote the Gaussian coefficient by[n m]q which as numbers ofsubspaces over Fq. First, proved several Gauusian coefficient identity with the combinatorial method, then several Gauusian coefficient identity are given and their proofs with the combinatorial method.
出处
《东北师大学报(自然科学版)》
CAS
CSCD
北大核心
2014年第2期40-44,共5页
Journal of Northeast Normal University(Natural Science Edition)
基金
海南省自然科学基金资助项目(113009)