期刊文献+

基于Backstepping方法对超混沌Rossler系统的控制与同步研究 被引量:5

Controlling and synchronizing hyperchaotic Rossler system using Backstepping design
下载PDF
导出
摘要 对超混沌Rossler系统提出了基于Backstepping的超混沌控制与同步方法,在反向递推每一步设计算法中构造虚拟控制器,使得构造的Lyapunov函数导数负定,逐步修正算法使误差系统在Lyapunov意义下渐近稳定,实现控制器的设计.只使用一个控制器实现了对超混沌Rossler系统控制与同步,数值实验结果证实了所设计控制器的有效性. This paper presents a Backstepping design method for controlling and synchronizing hyperchaotic Rossler system. In each recursive procedure, the virtual controller is designed for the differential of Lyapunov function negative definite. The controller is designed when the error system is stabilize by the stability theory of Lyapunov. The only one controller is needed for controlling and synchronizing hyperchaotic Rossler system using Backstepping design. The simulation results verifythe effectiveness of involved controllers.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期69-73,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10847110) 吉林省自然科学基金资助项目(201115008)
关键词 控制 同步 BACKSTEPPING方法 超混沌Rossler系统 control synchronize Backstepping method hyperchaotic Rossler system
  • 相关文献

参考文献12

  • 1OTT E, GREBOGI C, YORKE J A. Controlling chaos[J]. Phys Rev Lett, 1990,64 : 1196.
  • 2CHEN G, DONG X. On feedback control of chaotic nonlinear dynamic system[J]. Bifurcation and Chaos, 1992,2:407-411.
  • 3CHEN S, Ltl J. Parameters identification and synchronization of chaotic systems based upon adaptive control[J]. Phys Lett A, 2002,19(4) : 299-353.
  • 4LIAO T L,LIN S H. Adaptive control and synchronization of Lorenz systems[J]. J Franklin Inst, 1999,336: 925.
  • 5YASSEN M T. Chaos control of Chen chaotic dynamical system[J]. Chaos, Solitons & Fractals, 2003,15: 271.
  • 6WU Z M,XIE J Y,FANG Y Y. Controlling chaos with periodic parametric perturbations in Lorenz system[J]. Chaos, Solitons and Fractals, 2007,32 : 104-112.
  • 7YASSEN M T. Chaos control of Chen chaotic dynamical system[J]. Chaos, Solitons and Fractals, 2003,15:271-283.
  • 8YU Y G,ZHANG S C. Controlling uncertain Lia system using Backstepping design[J]. Chaos,Solitons and Fractals, 2003,15: 897-9O2.
  • 9TAN X H, ZHANG J Y, YANG Y R. Synchronizing chaotic system using Backstepping design[J]. Chaos, Solitons and Fraetals, 2003,16 : 37-45.
  • 10YASSEN M T. Controlling,synchronization and tracking chaotic Liu system using active Backstepping design [J]. Phys Lett A,2006,8(67) : 1-6.

二级参考文献2

共引文献14

同被引文献45

  • 1吴蕾,蒋式勤.基于DSP Builder的Lorenz系统时滞混沌实验方法[J].系统仿真技术,2007,3(1):20-24. 被引量:6
  • 2白连军,蒋式勤,徐鉴,杨凡.时滞反馈Lorenz混沌系统的复杂动力学特性[J].同济大学学报(自然科学版),2005,33(12):1691-1695. 被引量:5
  • 3徐鉴,裴利军.时滞系统动力学近期研究进展与展望[J].力学进展,2006,36(1):17-30. 被引量:65
  • 4DA LIN, HONGJUN LIU,HONG SONG,et al. Fuzzy neural control of uncertain chaotic systems with backlash nonlinearity [J]. International Journal of Machine Learning and Cybernetics,2014,5(5):721-728.
  • 5KUZNETSOV NV,MOKAEV TN, VASILYEV PA. Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor[J]. Communications in Nonlinear Science and Numerical Simulation,2014,19(4) :1027-1034.
  • 6DA LIN, FUCHEN ZHANG,JIAMING LIU. Symbolic dynamics-based error analysis on chaos synchronization via noisy channels[J]. Physical Review, 2014, E90 : 012908.
  • 7LEONOV GA. Bounds for attractors and the existence of homoclinic orbits in the Lorenz system[J]. J Appl Math Mech,2001, 65(1):19-32.
  • 8POGROMSKY A, SANTOBONI G, NIJMEIJER H. An ultimate bound on the trajectories of the Lorenz system and its applications[J]. Nonlinearity, 2003,16 : 1597-1605.
  • 9PEI YU, XIAOXIN LIAO. Globally attractive and positive invariant set of the Lorenz system[J]. International Journal of Bifurcation and Chaos, 2006,16 (3) : 757-764.
  • 10FUCHEN ZHANG,CHUNLAI MU,GUANGYUN ZHANG,et al. Dynamics of two classes of Lorenz-type chaotic systems [J/OL]. Complexity,[2014-03-20]. http://onlinelibrary, wiley, com/doi/10. 1002/cplx. 21571/abstract.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部