期刊文献+

对流扩散方程的一种新间断有限元解法 被引量:2

A Novel Discontinuous Galerkin Method for the Convection-Diffusion Equations
原文传递
导出
摘要 该文采用标准迎风格式离散对流项,结合Bassi和Rebay提出的高效格式离散拉普拉斯算子,构建了求解对流扩散方程的一种新的间断有限元方法。数值计算的结果表明:该方法对网格类型的依赖度较小并且精度比较高,可以使用高阶插值函数得到比较精确的结果;该方法数值耗散较小,对于强对流和强间断性的问题,可以得到很好的结果。 A novel Discontinuous Galerkin Method is developed to solve the convection-diffusion equations. In this method, the convection term is discreted by standard upwind scheme, and the Laplace term is discreted by an effective scheme proposed by Bassi and Rebay. Numerical results show that, this Discontinuous Galerkin Method is insensitive to the element type, and can achieve high accuracy by using high order shape function. Especially, this method has less numerical dissipation than other traditional methods, which is suited to solve the convection dominated problems with strong discontinuity.
出处 《水动力学研究与进展(A辑)》 CSCD 北大核心 2014年第3期267-273,共7页 Chinese Journal of Hydrodynamics
基金 国家自然科学基金项目(11072154,51379125,11272120) 上海高校特聘教授岗位跟踪计划(2013022) 国家重点基础研究发展计划(2013CB036103)~~
关键词 对流扩散方程 间断有限元方法 高阶插值函数 强间断 convection-diffusion equations discontinuous Galerkin method high order shape function strong discontinuity
  • 相关文献

参考文献12

  • 1SHUKLA A, SINGH A K, SINGH R A comparative study of finite volume method and finite difference me- thod for convection-diffusion problem[J]. American Journal of Computional and Applied Mathematics, 2011, 1(2): 67-73.
  • 2TEZDUYAR T E, GANJOO D K. Petrov-Galerkin for- mulations with weighting functions dependent upon spatial and temporal discretization: Applications to tran- sient convection-diffusion problems[J]. Computer Me- thods in Applied Mechanics and Engineering, 1986, 59(1): 49-71.
  • 3COCKBURN B, SHU C W. The local discontinuous Galerkin time-dependent method for convection-diffu- sion systems[J]. SIAM Journal on Numerical Analysis, 1998, 35(6): 2440-2463.
  • 4COCKBURN B, LIN S Y, SHU C W. TVB Runge- Kutta local projection discontinuous Galerkin finite ele- ment method for conservation laws llI: One dimensio- nal systems[J]. Journal of Computational Physics, 1989, 84(1): 90-113.
  • 5COCKBURN B, HOU S, SHU C W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case[J]. Mathematics of Computation, 1990, 54(190): 545-581.
  • 6COCKBURN B, GOPALAKRISHNAN J, LAZAROV R. Unified hybridization of discontinuous Oalerkin, mixed and continuous Galerkin methods for second- order elliptic problems[J]. SlAM Journal on Numerical Analysis, 2009, 47(2): 1319-1365.
  • 7NGUYEN N C, PERAIRE J, COCKBURN B. An im- plicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations[J]. Journal of Computational Physics, 2009, 228(9): 3232- 3254.
  • 8BASSI F, REBAY S, MARIOTTI G, et al. A high-order accurate discontinuous finite element method for invi- scid and viscous turbomachinery flows[C]. Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics. Technologisch Insti- tuut, Antwerpen, Belgium, 1997, 99-108.
  • 9CASTILLO P, COCKBURN B, PERUGIA I, et al. An a priori error analysis of the local discontinuous Galerkin method for elliptic problems[J]. SIAM Journal on Nu- merical Analysis, 2000, 38(5): 1676-1706.
  • 10LIB Q. Discontinuous finite elements in fluid dynamics and heat transfer[M], London, UK: Springer, 2006.

同被引文献30

  • 1杨继明.对流占优对流扩散方程的间断有限元(DG)解法[J].湖南工程学院学报(自然科学版),2006,16(1):67-69. 被引量:5
  • 2肖捷,刘韶鹏.求解间断系数椭圆型问题的一种改进的DG方法[J].计算数学,2007,29(4):377-390. 被引量:3
  • 3ZIENKIEWICZ O C, GALTAGHER R H, HOOD P. Newtonian and non-newtonian viscous incompressible flow, temperature induced flows, finite element solu- tion[J]. The Mathematics of Finite Elements and Appli- cations II, 1975.
  • 4BROOKS A N, HUGHES T J R. Streamline upwind/ Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation[J]. Computer Methods in App- lied Mechanics and Engineering, 1982, 32(1-3): 199- 259.
  • 5CHAPELLE D, BATHE K J. The inf-sup test[J]. Com- puter & Structures, 1993, 57(4-5): 322-333.
  • 6HANSBO P, SZEPESSY A. Velocity-pressure stream- line diffusion finite element method for the incompre- ssible Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering, 1990, 84(2): 175-192.
  • 7TEZDUYAR T E, MITTAL S, RAY S E, et al. Incom- pressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure ele- ments[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 95(2): 221-242.
  • 8GUERMOND J L, QUARTAPELLE L. On stability and convergence of projection methods based on pressure poisson equation[J]. International Journal for Numerical Methods in Fluids, 1998, 26: 1039-1053.
  • 9CODINA R. Pressure stability in fractional step finite element methods for incompressible flows[J]. Journal of Computational Physics, 2001, 170(1): 12-40.
  • 10PRASAD A K, KOSEFF J R. Reynolds number and end-wall effects on a lid-driven cavity flow[J]. Physics of Fluids, 1989, 1(2): 208.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部