期刊文献+

基于量子粒子群优化的改进的模糊C-均值聚类算法

Improved Fuzzy C-Means Clustering Based on Quantum-behave Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 模糊C均值算法(FCM)是一种用于聚类的最流行的技术。不过,传统的FCM使用欧氏距离作为数据集的相似准则,从而导致数据集的划分有相等的趋势。而数据集的形状和簇的密度对聚类性能有高度影响。为了解决这个问题,提出基于簇密度的距离调节因子以修正相似性度量。同时,针对模糊C-均值(FCM)聚类算法对初始聚类中心选择敏感,易陷入局部最优的问题,采用量子粒子群优化算法以获取全局最优解。仿真实验证明,改进的聚类算法(QPSO-FCM-CD)具有良好的性能。 Fuzzy c-means(FCM) clustering algorithm is one of the most popular techniques used for clustering. However, the conventional FCM uses the Euclidean distance as the similarity criterion of data points, which leads to limitation of equal parti-tion trend for data sets. And the clustering performance is highly affected by the data structure including cluster shape and cluster density. To solve this problem, a distance regulatory factor which is based on cluster density is proposed to correct the similarity measurement. And, Fuzzy c-means(FCM) clustering algorithm has the shortcomings of being sensitive to the initial cluster cen-ters and being trapped by local optima, to resolve two disadvantages, Quantum-behavior Particle Swarm Optimization(QPSO) is used to get the global optimal solution. Data experimental results show that the improved algorithm(QPSO-FCM-CD) has supe-rior performance.
作者 汤官宝 TANG Guan-bao (Department of Elementary Education, Aba Teachers College, Wenchuan 623002, China)
出处 《电脑知识与技术》 2014年第5期3084-3087,共4页 Computer Knowledge and Technology
关键词 聚类分析 模糊C-均值(FCM) 量子粒子群(QPSO) 簇密度 Clustering Fuzzy C-means (FCM) Quantum-behavior Particle Swarm Optimization(QPSO) Cluster density
  • 相关文献

参考文献8

  • 1Kim dae-won, Lee K wang H. A novel initialization scheme for the fuzzy C-means algorithm for color clustering[J]. Pattern Recogni- tion Letters,2004,25(2):227-237.
  • 2Witold Pedrycz, partab Rai. Collaborative clustering with the use of Fuzzy C-Means and its quantification[J]. Fuzzy Sets and Systems, 2008,159(18):2399-2427.
  • 3刘小芳,曾黄麟,吕炳朝.点密度函数加权模糊C-均值算法的聚类分析[J].计算机工程与应用,2004,40(24):64-65. 被引量:28
  • 4吕晓燕,罗立民,李祥生.FCM算法的改进及仿真实验研究[J].计算机工程与应用,2009,45(20):144-146. 被引量:16
  • 5Ramathilagam S.Huang Yueh-Min Extended Gaussian kernel version of fuzzy C-means in the problem of data analyzing,2011(4).
  • 6Lou X J,Li J Y,Liu H T.Improved fuzzy C-means clustering algorithm based on cluster density. Journal of Computational Information System, 2012,8(2):727-737.
  • 7Kennedy J; Eberhart R C Particle swarm optimization,1995.
  • 8Sun J,Xu W B. A global search strategy of quantum-behave particle warm optimization 2004.

二级参考文献10

  • 1Bezdek J C.Patteru Recognition with Fuzzy Objective Function Algorithms[M].New York: Plenum Press, 1981
  • 2Bensaid A M,Hall L O.Partially Supervised Clustering for Image Segnentation[J].Pattern Recognition, 1996; 29 (5): 859~872
  • 3Pal N R,Bezdek J C.On Cluster Validity for the Fuzzy C-Means ModeI[J].IEEE Trans, Fuzzy Systems, 1995; 3 (4): 370~379
  • 4Clarke E M,Schlingloff B H.Model checking[M]//Handbook of Automated Reasoning.Band II,S Elsevier,2001 : 1637-1790.
  • 5Berard B,Bidoit M,Finkel A.Systems and software verification: Model-checking techniques and tools[M].Berlin:Springer, 1999.
  • 6Holzmann G J.Spin model checker:The primer and reference manual[M].New York:Addison Wesley,2003.
  • 7Bezdek J C.Pattem recognition with fuzzy objective function algorithms[M].New York : Plenum Press, 1981.
  • 8Kira K,RendellL A.A practical approach to feature selection[C]// Proceedings of the 9th International Workshop on Machine Leaning. San Francisco, CA : Morgan Kaufmann, 1992: 249-256.
  • 9Kononenko I.Estimating attributes:Analysis and extensions of Relief[C]//Proceedings of the 7th European Conference on Machine Learning.Berlin: Springer, 1994:171-182.
  • 10何清.模糊聚类分析理论与应用研究进展[J].模糊系统与数学,1998,12(2):89-94. 被引量:113

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部