期刊文献+

双局部粒子群算法解决环境经济调度问题 被引量:4

Two local best based multi-objective particle swarm optimization algorithm to solve environmental/economic dispatch problem
下载PDF
导出
摘要 提出一种基于双局部最优的多目标粒子群优化算法,与可行解为优的约束处理方法相结合,来求解决非线性带约束的多目标电力系统环境经济调度问题。该算法针对传统多目标粒子群算法多样性低的局限性,通过对搜索空间的分割归类来增加帕累托最优解的多样性;并采用一种新的双局部最优来引导粒子的搜索,从而增强了算法的全局搜索能力。算法加入了可行解为优的约束处理方法对IEEE30节点六发电机电力系统环境经济负荷分配模型分别在几个不同复杂性问题的情况进行仿真测试,并与文献中的其他算法进行了比较。结果表明,改进的算法能够在保持帕累托最优解多样性的同时具有良好的收敛性能,更有效地解决电力系统环境经济调度问题。 A two local best based Multi-Objective Particle Swarm Optimization algorithm(2lb-MOPSO) is integrated with superiority of feasible solution constraint handling method in this paper to solve the nonlinear constrained multi-objective Environmental Economic Dispatch(EED) problem. One of the main drawbacks of classical multi-objective particle swarm optimization algorithm is low diversity. To overcome this disadvantage, the searching space is partitioned into fixed number of bins in the proposed algorithm. The algorithm uses two local best to lead the search particles which can increase the diversity of the population. The algorithm is combined with superiority of feasible solution constraint han-dling method and applied to the standard IEEE 30-bus six-generator test system. The performance is compared against several method obtained from the literature. The results show that the proposed algorithm is able to generate good performance in terms of both diversity and convergence in solving EED problems.
出处 《计算机工程与应用》 CSCD 2014年第11期1-6,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.60905039) 中国博士后科学基金特别资助项目(No.2012T50639) 教育部高等学校博士学科点专项科研基金(No.20114101110005) 河南省科技攻关项目(No.132102210521)
关键词 环境 经济调度 多目标优化 粒子群优化 约束处理方法 environmental/economic dispatch multi objective optimization particle swarm optimization constraint handling method
  • 相关文献

参考文献17

  • 1Le K D, Golden J L, Stansberry C J, et al.Potential impacts of clean air regulations on system operations[J].IEEE Transactions on Power Systems, 1995:647-656.
  • 2Zahavi J,Eisenberg L.An application of the economic- environmental power dispatch[J].IEEE Trans on Syst, Man, Cybernet, 1977,7 (7) : 523-530.
  • 3Granelli G P, Montagna M, Pasin G L.Emission constrained dynamic dispatch[J].Electric Power Systems Research, 1992,24( 1 ) : 55-64.
  • 4Yokoyama R, Bae S H, Morita T, et al.Multiobjective opti- mal generation dispatch based on probability security cri-teria[J].IEEE Trans on Power Systems, 1988,3( 1 ) :317-324.
  • 5Dhillon J S,Parti S C,Kothari D P.Stochastic economic emission load dispatch[J].Electric Power Systems Research, 1993,26(3) :186-197.
  • 6Robert T F, King A H, Harry C S, et al.Stochastic evolu- tionary multiobjective environmental/economic dispatch[C]// Proceedings of IEEE Congress on Evolutionary Compu- tation, 2006 : 946-953.
  • 7Zhang Q,Li H.MOEA/D:a multiobjective evolutionary algorithm based on decomposition[J].IEEE Trans on Evolu- tionary Computation, 2007,11 (6) : 712-731.
  • 8Eberhart R, Kennedy J.A new optimizer using particle swarm theory[C]//Proceedings of 6th International Sym- posium on Micro Machine and Human Science, 1995: 39-43.
  • 9裴胜玉,周永权.用于约束多目标优化问题的混合粒子群算法[J].计算机工程与应用,2011,47(15):49-52. 被引量:3
  • 10刘淳安.解多目标优化问题的新粒子群优化算法[J].计算机工程与应用,2006,42(2):30-32. 被引量:5

二级参考文献22

  • 1蔡自兴,龚涛.免疫算法研究的进展[J].控制与决策,2004,19(8):841-846. 被引量:56
  • 2刘淳安,王宇平.一种基于新的模型的多目标存档遗传算法[J].计算机工程与应用,2005,41(4):43-45. 被引量:4
  • 3王跃宣,刘连臣,牟盛静,吴澄.处理带约束的多目标优化进化算法[J].清华大学学报(自然科学版),2005,45(1):103-106. 被引量:55
  • 4郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 5Kalyanmoy Deb.Multi-Objective Optimization using Evolutionary Algorithms[M].Chichester : John Wiley & Sons, Ltd, 2001.
  • 6J D Knowles,D W Come.Approximating the Non-Dominated Front Using the Pareto Archived Evolutionary Strategy[J].Evolutionary Computation,2000;8(2) : 149-172.
  • 7R Eberhart,J Kennedy.A New Optimizer Using Particle Swarm Theory[C].In:Proc of the 6th Int Symposium on Micro Machine and Human Science. Piscataway,NJ:IEEE Service Center,1995:39-43.
  • 8J Kennedy,R Eberhart.Particle Swarm Optimization[C].In :IEEE Int'l Conf on Neural Networks,Perth, Australia, 1995.
  • 9Eckart Zitzler, Kalyanmoy Deb, Lothar Thele.Comparison of Multi-Objective Evolutionary Algorithms :Empirical Results[J].Evolutionary Computation, 2000; 8 (2) : 1-24.
  • 10Shi Y,Eberhart R C,Particle Swarm Optimization:Developments,Applications and Resource[C].In:Proc of Congress on Evolutionary Computation, NJ: Piscataway Press, 2001 : 81 -86.

共引文献6

同被引文献51

  • 1胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 2Robert T F, King A H, Harry C S, et al. Stochastic evolutionary multiobjective environmental/economic dispatch[C]. Proc of IEEE Congress on Evolutionary Computation. Vancouver: IEEE Press, 2006: 946-953.
  • 3Cai J J, Ma X Q, Li Q. A multi-objective chaotic particle swarm optimization for environment/economic dispatch[J]. Energy Conversion and management, 2009, 50(5): 1318- 1325.
  • 4Zhang R, Zhou J, Mo L, et al. Economic environmental dispatch using an enhanced multi-objective cultural algorithm[J]. Electric Power Systems Research, 2013t 99(7): 18-29. /.
  • 5Basu M. Economic environmental dispatch using multi- objective differential evolution[J]. Applied Soft Computing, 2011, 11(2): 2845-2853.
  • 6Kennedy J. Particle swarm optimization[M]. US: Springer, 2010: 760-766.
  • 7Li X. A multimodal particle swarm optimizer based on fitness Euclidean-distance ratio[C]. Proc of the 9th Annual Conf on Genetic and Evolutionary Computation. New York: ACM, 2007: 78-85.
  • 8Qu B Y, Liang J J, Suganthan P N. Niching particle swarm optimization with local search for multi-modal optimization[J]. Information Sciences, 2012, 197(197): 131-143.
  • 9Huband S, Barone L, While L, et al. A scalable multi- objective test problem toolkit[C]. Evolutionary Multi- Criterion Optimization. Berlin: Springer, 2005: 280-295.
  • 10Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi- objective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部