期刊文献+

基于改进蛙跳算法的图像对比度增强方法 被引量:2

Image contrast enhancement method based on improved shuffled frog leaping algorithm
下载PDF
导出
摘要 为改善图像对比度,提出了一种基于改进蛙跳算法的图像对比度增强新方法。该方法利用分段线性变换增强图像的原理,对蛙跳算法进行深入分析并进行改进后,将改进蛙跳算法与二维Otsu法相结合,利用蛙群的并行搜索机制自动选取图像的双阈值,然后再以图像的对比度作为改进蛙跳算法的适应度函数,自适应地搜索分段线性变换的斜率,并以之增强图像。实验结果表明,该方法有效改善原图像的对比度,且优于直方图均衡化法及基于基本蛙跳算法和人工鱼群算法的增强方法。 To improve poor image contrast, this paper proposes an image enhancement method based on improved Shuf-fled Frog Leaping algorithm(SFL). According to the enhancement rule of traditional piecewise linear transformation, this method first analyzes and improves the basic SFL algorithm. Then a pair of thresholds of the original image is found auto-matically by combining the improved SFL algorithm with 2D Otsu method. Finally, regarding image contrast as the fit-ness function of the improved SFL algorithm, the transformative slopes of the piecewise linear transformation are searched automatically so as to get the enhancement image. Experimental results show that the proposed method not only can effectively better image contrast, but also is superior to some traditional methods, such as histogram equalization method and the enhancement methods based on basic SFL algorithm or artificial fish swarm algorithm.
作者 康杰红 马苗
出处 《计算机工程与应用》 CSCD 2014年第11期171-175,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.10974130) 陕西省青年科技新星项目(No.2011kjxx17) 陕西省自然科学基金项目(No.2011JQ8009) 陕西省重点实验室开放共享项目(No.SAIIP201202)
关键词 对比度增强 改进蛙跳算法 分段线性变换 二维OTSU法 contrast enhancement improved Shuffled Frog Leaping(SFL)algorithm piecewise linear transformation 2D Otsu method
  • 相关文献

参考文献10

二级参考文献37

共引文献705

同被引文献23

  • 1KIM Y T. Contrast enhancement using brightness preserving bi- histogram equalization [ J ]. IEEE Transactions on Consumer Electronics, 1997,43 ( 1 ) : 1-8.
  • 2WANG Y,CHEN Q, ZHANG B M. hnage enhancement based on equal area dualistic sub-image histogram equalization method [J ]. IEEE Transactions on Consumer Electronics, 1999, 45(1) :68-75.
  • 3TURGAY C,TARTI T. Contextual and variational contrast en- hancement[ J]. IEEE Transactions on Image Processing,2011, 20 ( 12 ) :3431-3441.
  • 4LEE C,KIM C S, LEE C W. Contrast enhancement based on layered difference representation of 2D histograms [ J ]. IEEE Transactions on Image Processing,2013,22( 12 ) :5372-5384.
  • 5ARICI T, DIKBAS S, ALTUNBASAK Y. A histogram modifica- tion framework and its application for image contrast enhance- ment [ J ]. IEEE Transactions on Image Processing, 2009,18(9) :1921-1935.
  • 6WU X L. A linear programming approach for optimal contrast tone mapping [ J ]. IEEE Transactions on Image Processing 2011,20 ( 5 ) : 1262-1272.
  • 7HASHEMI S, KIANI S, NOROOZI N, et al. An image contrast enhancement method based on genetic algorithm [ J]. Pattern Recognition Letters,2010,31 ( 13 ) : 1816-1824.
  • 8DRAGO F,MYSZKOWSKI K,ANNEN T,et al. Adaptive loga- rithmic mapping for displaying high contrast scenes [ J ]. Com- puter Graphics Forum, 2003,22 ( 3 ) :419 426.
  • 9AGAIAN S S, SILVER B, PANETTA K A. Transform coeffi- cient histogram-based image enhancement algorithms using con- trast entropy [ J ]. IEEE Transactions on Image Processing, 2007,16 ( 3 ) :741-758.
  • 10MITTAL A,MOORTHY A K,BOVIK A C. No-reference image quality assessment in the spatial domain [ J ]. IEEE Transactions on Image Processing,2012,21 (12) :4695-4708.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部