期刊文献+

Numerical simulation of wellbore and formation temperature fields in carbonate formations during drilling and shut-in in the presence of lost circulation 被引量:3

Numerical simulation of wellbore and formation temperature fields in carbonate formations during drilling and shut-in in the presence of lost circulation
下载PDF
导出
摘要 Temperature curves reflect geothermal gradients and local temperature anomalies, thus providing a new understanding of the underground reservoir conditions. When encountering caverns or fractures and fissures during drilling, lost circulation may occur and result in a change to the original formation temperature field, and in severe cases, even the conventional open hole well logging data cannot be obtained. This paper uses finite element analysis software COMSOL to establish a heat transfer model for the wellbore/reservoir formation system during drilling and shut-in in the presence of lost circulation, and a case study is made in a carbonate reservoir in the Tahe oilfield. On the basis of the above, we analyze the temperature distribution in the leakage zone, and the studies have shown that the leakage and petrophysical properties have an impact on the temperature of the wellbore and formation, hence we can estimate the reservoir permeability using the temperature data. In addition, the determination of the temperature recovery time after some drilling fluids have leaked into the formation will help in recognizing the subsurface temperature field of the carbonate formation correctly, thus enhancing production logging interpretation accuracy and improving the understanding of later measurements. Temperature curves reflect geothermal gradients and local temperature anomalies, thus providing a new understanding of the underground reservoir conditions. When encountering caverns or fractures and fissures during drilling, lost circulation may occur and result in a change to the original formation temperature field, and in severe cases, even the conventional open hole well logging data cannot be obtained. This paper uses finite element analysis software COMSOL to establish a heat transfer model for the wellbore/reservoir formation system during drilling and shut-in in the presence of lost circulation, and a case study is made in a carbonate reservoir in the Tahe oilfield. On the basis of the above, we analyze the temperature distribution in the leakage zone, and the studies have shown that the leakage and petrophysical properties have an impact on the temperature of the wellbore and formation, hence we can estimate the reservoir permeability using the temperature data. In addition, the determination of the temperature recovery time after some drilling fluids have leaked into the formation will help in recognizing the subsurface temperature field of the carbonate formation correctly, thus enhancing production logging interpretation accuracy and improving the understanding of later measurements.
出处 《Petroleum Science》 SCIE CAS CSCD 2014年第2期293-299,共7页 石油科学(英文版)
关键词 Temperature field numerical simulation finite element drilling fluid invasion LEAKAGE Temperature field, numerical simulation, finite element, drilling fluid invasion, leakage
  • 相关文献

参考文献9

二级参考文献164

共引文献61

同被引文献34

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部