期刊文献+

相对论性非完整系统的Lagrange对称性与守恒量 被引量:2

SYMMETRY AND CONSERVED QUANTITY OF LAGRANGIANS FOR RELATIVISTIC NONHOLONOMIC SYSTEM
下载PDF
导出
摘要 本文研究相对论性非完整系统的Lagrange对称性,给出相对论性非完整系统Lagrange对称性的判据,得到相对论性非完整系统Lagrange对称性导致的守恒量及其存在条件,最后举例说明结果的应用. In this paper, we are study the symmetry of Lagrangians and the conserved quantities for a nonholo- nomic relativistic system. The Criterion of the symmetry for a nonholonomie relativistic system is given. Then the conditions under which there exist a conserved quantity and the form of the conserved quantity are obtained. And finally there is an example to illustrate the application of the results.
出处 《动力学与控制学报》 2014年第2期105-110,共6页 Journal of Dynamics and Control
基金 山东省自然科学基金(ZR2011AM012) 中国石油大学(华东)自主创新科研计划项目(27R1210006A) 中国石油大学(华东)研究生自主创新科研计划项目(13CX06005A)~~
关键词 相对论 非完整系统 Lagrange对称性 守恒量 relativisitc, nonholonomic system, symmetry of Lagrangians, conserved quantity
  • 相关文献

参考文献27

二级参考文献259

共引文献199

同被引文献34

  • 1ZHANGHong-Bin,CHENLi-Qun,Shu-Long.Lie Symmetries and Non-Noether Conserved Quantities of Nonholonomic Systems[J].Communications in Theoretical Physics,2004,42(3X):321-324. 被引量:2
  • 2赵跃宇.非保守力学系统的Lie对称性和守恒量[J].力学学报,1994,26(3):380-384. 被引量:77
  • 3梅凤翔.一类弱非完整系统的稳定性[J].北京理工大学学报,1995,15(3):237-242. 被引量:3
  • 4Leach P G L, Moyo S, Cotsakis S, Lemmer R L. Symme- try, singularities and integrability in complex dynamics Ⅲ : approximate symmetries and invariants. Journal of Nonlin- ear Mathematical Physics, 2001,8(1 ) : 139 - 156.
  • 5Govinder K S, Heil T G, Uzer T. Approximate Noether symmetries. Physics Letters A, 1998, 240(3) :127 - 131.
  • 6Unal G. Approximate generalized symmetries, normal forms and approximate first integrals. Physics Letters A, 2000, 266(2) : 106 - 122.
  • 7Kara A H, Mahomed F M, Unal G. Approximate symme- tries and conservation laws with application. International Journal of Theoretical Physics, 1999, 38(9) : 2389 -2399.
  • 8Johnpillai A G, Kara A, H. Variational formulation of ap- proximate symmetries and conservation laws. International Journal of Theoretical Physics, 2001,40 (8) , 1501 - 1509.
  • 9Dolapei I T, Pakdemirli M. Approximate symmetries of creeping flow equations of a second grade fluid. Interna- tional Journal of Non-linear Mechanics, 2004, 39 ( 10 ) : 1603 - 1619.
  • 10Kara A H, Mahomed F M, Qadir A. Approximate symme- tries and conservation laws of the geodesic equations for the Sehwarzsehild metric. Nonlinear Dynamics, 2008, 51 1- 2): 183- 188.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部