期刊文献+

基于非线性混沌理论的非平稳信号的比较分析

COMPARATIVE ANALYSES OF NON- STATIONARY SIGNALS BASED ON NONLINEAR CHAOTIC THEORIES
下载PDF
导出
摘要 本文研究采用基于非线性混沌理论的两种非线性参数估计方法(代替数据法和Lyapunov指数估计法)对非平稳信号进行分析.首先对上述两种非线性方法的具体算法进行介绍,然后对两组本质不同的非平稳振动信号进行对比分析.这两组信号是通过测试具有不同非线性约束边界条件的薄壁构件获得.分析结果表明,在时域波形上直观相似的非平稳信号,用上述非线性混沌分析的方法可以有效地加以定量区分. In the paper,two nonlinear estimation methods based on nonlinear chaotic theory,surrogate data method and Lyapunov exponents,are used to distinguish the difference of non-stationary signals.After brief introduction of the corresponding algorithms,two typical different non-stationary signals measured from a thin-plate structure with different nonlinear constraining boundaries are taken to compare by using the above two methods respectively.The obtained results demonstrate that the apparently similar signals are distinguished effectively in quantitative way with applying above nonlinear chaotic analyses.
出处 《动力学与控制学报》 2014年第2期188-192,共5页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(10972192)~~
关键词 非线性混沌理论 非平稳信号 代替数据法 LYAPUNOV指数 nonlinear chaotic theory non-stationary signals surrogate data method Lyapunov exponents
  • 相关文献

参考文献16

  • 1Kantz H,Schreiber T. Nonlinear time series analysis. Cam- bridge : Cambridge University Press, 1999.
  • 2He Zhengjia, Meng Qingfeng, Zhao Juyuan, et al. Time- frequency (scale) analysis and diagnosis for nonstationary dynamic signal of machinery . International Journal of Plant Engineering and Management, 1996,1 ( 1 ) :40 - 47.
  • 3Mehzer G S, Ivanov Y Y. Fault detection in gear drives with non-stationary rotational speed- Part I: the time-fre- quency approach . Mechanical Systems and Signal Process- ing, 2003,17(5) :1033 - 1047.
  • 4Wang Wenyi, Harrap M J. Condition monitoring of rolling element bearings by using cone kernel time-frequency dis- tribution. In: Processings of the SPIE Conference on Meas- urement Technology and Intelligent Instrument. Belling- ham,WA, 1993:290 - 298.
  • 5Katvonik V, Stankovic L. Instantaneous frequency estima- tion using the Wigner distribution with varying and data- driven widow length. IEEE Transactions on Signal Process- ing, 1998,46(9) :2351 -2325.
  • 6Casdagli M. Nonlinear prediction of chaotic time series . Physica D, 1989,35(3) :335 -356.
  • 7Engbert R. Testing for nonlinearity: the role of surrogate data. Chaos, Solitons & Fractals, 2002,13( 1 ) :79 -84.
  • 8Banbrook M,Ushaw G, McLaughlin S. Lyapunov exponents from a time series: a noise-robust extraction algorithm. Chaos, Solitons & Fractals, 1996,7 (7) : 973 - 976.
  • 9Theiler J, Eubank S, Longtin A, et al. Testing for nonlin-earity in time series : the method of surrogate data. Physica D: Nonlinear Phenomena, 1992,58(1-4) :77 -94.
  • 10Yonemoto K, Yanagawa T. Estimating the Lyapunov expo- nent from chaotic time series with dynamic noise. Statistical Methodology, 2007,4 (4) :461 - 480.

二级参考文献17

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部