摘要
Transient molten steel flow in a slab continuous casting mold has been calculated using large eddy simulation, considering heat transfer and solidification. The transport of bubbles in the liquid pool of the solidified shell has been considered according to the dispersed phase model. A mathematical model has been used to evaluate the influence of bubble size, casting speed, and adsorption of nonmetallic inclusions on bubble removal and bubble distribution within the solidified shell in the mold. The results show that the ratio of bubbles floating to the top surface decreases with increasing casting speed and decreasing bubble diameter. Nonmetallic inclusion adsorption has a weak effect on the bubble.
Transient molten steel flow in a slab continuous casting mold has been calculated using large eddy simulation, considering heat transfer and solidification. The transport of bubbles in the liquid pool of the solidified shell has been considered according to the dispersed phase model. A mathematical model has been used to evaluate the influence of bubble size, casting speed, and adsorption of nonmetallic inclusions on bubble removal and bubble distribution within the solidified shell in the mold. The results show that the ratio of bubbles floating to the top surface decreases with increasing casting speed and decreasing bubble diameter. Nonmetallic inclusion adsorption has a weak effect on the bubble.