期刊文献+

空中交通复杂性指标体系精炼方法研究 被引量:3

Research on Refinement Method of Air Traffic Complexity Metrics System
下载PDF
导出
摘要 为了准确评估空中交通复杂性,需要构建多维复杂性指标体系并对指标进行精炼.借鉴已有的研究成果,构建指标体系,使用K-means聚类方法对指标进行聚类分析,与初始指标分类相互验证,最后使用主成分分析方法提炼指标内涵.以广州地区16扇区的航班数据为例,发现聚类结果不仅与经验结果一致,还可以对指标进行更精细的划分;指标经提炼后保留了98%的信息,表达维度大大降低,从而验证了指标精炼方法的实用性和有效性. In order to evaluate air traffic complexity accurately,a multi-dimensional metrics system should be constructed and refined.Firstly,according to present research,build a metrics system.Then the K-means clustering algorithm is used to analyze metrics which can validate its results to initial classifications of metrics.Finally meanings of metrics are refined with the method of primary component analysis.In the case of the flight data of 16 th sector in Guangzhou region,clustering results are not only in accord with experience,but also divided more accurately and meticulously.Refined metrics hold 98 percent of information and reduce original metrics' dimensions.Results verify the practicality and effectiveness of this method.
出处 《武汉理工大学学报(交通科学与工程版)》 2014年第3期611-614,618,共5页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家科技支撑计划资助项目(批准号:2011BAH24B09)
关键词 空中交通复杂性 指标体系 指标精炼 K-MEANS聚类 主成分分析 air traffic complexity metrics system refinement of metrics K-means cluster primary component analysis
  • 相关文献

参考文献14

  • 1KLEIN A,RODGERS M D,LEIDEN K. Simplified dynamic density: a metric for dynamic airspace con- figuration and nextgen analysis[-C]//IEEE, Proceed- ings of the 28th Digital Avionics Systems Confer-ence, Piscataway, New Jersey: IEEE, 2009: 2. D. 3 1 2. D. 3-12.
  • 2LAI C F, ZELINSKI S. Simplified Dynamic Density Based Capacity Estimation[C]//Proceedings of the 28th Digital Avionics Systems Conference, Piscat away,New Jersey:IEEE,2009:2. E. 2-1 2. E. 2-10.
  • 3MASALONIS J A,CALLAHAM M B, FIGUEROA Y,et al. Indicators of airspace complexity for traffic flow management decision support[C]//Proceedings of the 12th International Symposium on Aviation Psychology, London: Taylor 8: Francis, 2003:778- 784.
  • 4RILEY V, SIERRA E, MOGFORD R, et al. Pilot perceptions of airspace complexity[C] // Proceedings of the 22nd Digital Avionics Systems Conference, Piscataway, New Jersey: IEEE,2003: 5. D. 4-1-5. D. 4-13.
  • 5LEE K, FERON E, PRITCHETT A. Describing air- space complexity: airspace response to disturbances [J]. AIAA Journal of Guidance, Control and Dynam- ics,2009,32(1) :210-222.
  • 6IDRIS R H, ROBERT V, WING D J. Metrics for traffic complexity management in self-separation op erations [J]. Air Traffic Control Quarterly, 2009,17 (1) :95-124.
  • 7ZHAO Yifei,ZHANG De, YUE Rentian,et al. Meth od to analyze air traffic situation based on air traffic complexity map[C] //gth USA/Europe ATM R.D Seminar, Germany, Berlin, 2011.
  • 8PRANDINI M, PIRODDI L, PUECHMOREL S, et al. Toward air traffic complexity assessment in new generation air traffic management systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2011,12(3) :809-818.
  • 9HISTON J M,HANSMAN R J. The Impact of struc ture on cognitive complexity in air traffic controlER]. Cambridge, Massachusetts : MIT, 2002.
  • 10HILBURN B. Cognitive complexity in air traffic control: a literature reviewe[R]. Brussels: Eurocon- trol,2004.

二级参考文献19

  • 1白雪梅,赵松山.对主成分分析综合评价方法若干问题的探讨[J].统计研究,1995,12(6):47-51. 被引量:68
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3王晓军.多指标综合评价指标无量纲化方法的探讨[J].统计学-经济数学方法,1993,(5).
  • 4于恒兰.综合评价的多元分析方法[J].统计研究,1993,(6).
  • 5白雪梅,统计学-经济数学方法,1996年,1期
  • 6王晓军,统计学-经济数学方法,1993年,5期
  • 7于恒兰,统计研究,1993年,6期
  • 8邱东,多指标综合评价方法的系统分析,1991年
  • 9团体著者,天津市统计年鉴
  • 10Klein A, Rodgers M D, Leiden K. Simplified dynamic density:A metric for dynamic airspace configuration and next gen analysis [C]// 28th Digital Avionics Systems Conference (DASC). Florida:Orlando, 2009..

共引文献1335

同被引文献20

  • 1赵嶷飞,张德.空中交通复杂性的概念及方法研究[C]//第一届中国航空通信导航监视及空管(CNS/ATM)学术会议,2010:72-75.
  • 2张晨.空中交通管理中的交通行为复杂性研究[D].南京:南京航空航天大学,2012.
  • 3CHRISTIEN R, BENKOUAR A, CHABOUD T, et al. Air Traffic Complexity Indicators & ATC Sectors Classification[Z]. http://www, atmseminar, org/ papers, efm? serninar ID: 5,2003-06-28.
  • 4EDWARD P. BUCKLEY, B. DEBARYSHE B, etal. Methods and measurements in real time air traffic control system simulation [R]. DOT/FAA/CT-83/ 26, Washington DC., FAA,1983.
  • 5PRANDINI M, PIRODDI L, PUECHMOREL S, et al. Toward air traffic complexity assessment in new generation air traffic management systems[J]. IEEE Trans. On Intelligent TransportatiOn Systems, 2011, 99:1-10.
  • 6PRANDINI M, PUTTA V, HU Jianghai. Air traf- fic complexity in advanced automated air traffic man- agement systems[C]. Proceedings of the 9th Innova- tive Research Workshop and Exhibition,2010.
  • 7PRANDINI M, HU Jianghai. A probabilistic ap- proach to air traffic complexity evaluation[C]. Pro- ceedings of the 48th IEEE Conference on Decision and Control Conference, Piscataway, New Jersey: IEEE, 2009:5207-5211.
  • 8ZHAO Yifei, ZHANG De, YUE Rentian, et al. Method to analyze air traffic situation based on air traffic complexity map[C]. 9th USA/Europe ATM R b-D Seminar, Berlin, Germany, 2011.
  • 9GANO B C, SRIDHAR B. Measures for air traffic controller workload prediction[C], the 1st AIAA Air- craft, Technology, Integration, and Operations Fo rum. Reston, Virginia: AIAA Inc. ,2011:2. C. 4-1- 2. C. 4-9.
  • 10KOPARDEKAR P, MAGYARITS S. Measurement and prediction of dynamic density[C]. Proceedings of the 5th USA/Europe Air Traffic Management R&D Seminar, Budapest, Hungary, 2003.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部