期刊文献+

严格对角占优M-矩阵‖A^(-1)‖_∞上界的新估计

New Estimation of the Upper Bound on ‖A^(-1)‖_∞ for Strictly Diagonally Dominant M-Matrices
下载PDF
导出
摘要 根据M-矩阵的特点和性质,对严格对角占优M-矩阵A^(-1)_∞的上界做了进一步研究,并给出相应的估计式,同时得到A的最小特征值下界的估计式;算例表明,这些新估计式改进了现有的结果。 According to the characteristics and properties of M- matrices, an upper bound for‖A-1‖∽ of strictly diagonally dominant M- matrices is further researched, and the corresponding new results are given. At the same time new lower bound on the smallest eigenvalue of A is derived. An example demonstrates that these inequalities are better than several known estimating formulas in some cases.
作者 周平
出处 《文山学院学报》 2014年第3期45-48,共4页 Journal of Wenshan University
基金 云南省科技厅应用基础研究青年项目"关于两个Schrodinger方程的数值解及其相关问题研究"(2013FD052) 云南省教育厅科研项目"几类对角占优矩阵范数的逆矩阵范数的界的估计"(2013Y585) 文山学院重点学科"数学"建设项目(12WSXK01)
关键词 对角占优 M-矩阵 无穷大范数 最小特征值 Diagonally dominance M- matrix infinity norm minimum eigen value
  • 相关文献

参考文献9

  • 1黄廷祝,杨传胜.特殊矩阵分析及应用[M].北京:科学出版社,2003.
  • 2R.A.Horn,C.R.Johnson.Topic in Matrix Analysis[M].New York:Cambridge University Press,1991:113-117.
  • 3Berman A,Plemmons R J.Nonnegative Matrices in the Mathematical Sciences[M].New York Academic Press,1979:85-101.
  • 4R.S.Varga.On diagonal dominance arguments for boundingA~(-1)_∞[J].Linear Algebra and its applications,1976,17:211-217.
  • 5G.H.Cheng,T.Z.Huang.An upper bound for A~(-1)_∞ of strictly diagonally dominant M-matrices[J].Linear Algebra and its applications,2007,426:667-673.
  • 6P.N.Shivakumar,J.J.Willians,Q.Ye,et al.On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital dynamics[J].SIAM J Matrix Analisis Applications,1996,17:298-312.
  • 7W.Li.The infinity norm bound for the inverse of nonsingular diagonal dominant matrices[J].Applications Math.Letter,2007,21:258-263.
  • 8T.Z.Huang,Y.Zhu.Estimation of A~(-1)_∞ for weakly chained diagonally dominant M-matrices[J].Linear Algebra and its applications,2010,432:670-677.
  • 9C.Q.Li,Y.T.Li,R.J.Zhao.New inequalities for the minimun eigenvalue of M-matrices[J].Linear and Multilinear Algebra,2013,61:1267-1279.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部