期刊文献+

基于天气雷达的长江三峡区间降雨定量估测方法 被引量:9

Radar-based quantitative precipitation estimate in the Three Gorges region of Yangtze River
原文传递
导出
摘要 天气雷达能够提供高时空分辨率的降雨观测,但其观测误差来源较多,影响到降雨估测精度。本研究针对长江三峡区间开发了基于单部地面天气雷达的定量降雨估测方法,包括波束遮挡分析、地物杂波抑制、降雨类型自动识别及多种Z-R关系转换等关键环节,并结合地面雨量观测对雷达估测结果进行了检验。结果显示,雷达的降雨估测精度随探测距离增加呈现明显的衰减趋势,较好估测降雨的范围是100公里以内。通过比较不同算法的结果,发现波束遮挡是万县雷达估测误差的主要来源之一。地物杂波是另一类主要误差来源,导致50公里范围内雷达探测降雨的误报率较高。通过识别降雨类型,针对不同降雨类型采用不同Z-R转换关系,可以降低降雨估测的偏差。2010年夏季降雨的观测结果表明,该算法对典型层状(对流)降雨会有低估(高估),总体上对逐时降雨量的估测略微偏低。 Weather radar can detect spatiotemporal variability of precipitation in high resolution, but it suffers several sources of error. In this study, over the Three Gorges region (TGR) in Yangtze River, we have developed a first version of single radar based quantitative precipitation estimation (QPE) algorithms including various critical procedures, such as beam blockage analysis, ground clutter filter, rain type identification, and multiple Z-R relations. Current radar based QPE shows obvious range dependent performance, which suggests it could only reliably retrieve rainfall within the range of 100 km. Further, comparison among three datasets processed with different algorithms reveals that beam blockage is one of major error sources; within the range of 50km, affected by ground clutters, false alarm is another typical error. Multiple Z-R relations have effectively reduced bias at various ranges. The overall performance indicates that radar QPE generally underestimates (overestimates) typical stratiform (convective) storm rainfall events, and as a whole, it tends to slightly underestimate hourly rainfall during the 2010 summer.
出处 《水力发电学报》 EI CSCD 北大核心 2014年第3期29-35,54,共8页 Journal of Hydroelectric Engineering
基金 水沙科学与水利水电工程国家重点实验室开放课题(sklhse-2010-A-03) 灾害天气国家重点实验室开放课题
关键词 水文学 天气雷达 定量降雨估计 精度评估 误差来源 hydrometeorology weather radar quantitative precipitation estimate evaluation error sources
  • 相关文献

参考文献18

  • 1Nijssen B,Lettenmaier D. P. Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipatingthe Global Precipitation Measurement satellites [J]. Journal of Geophysical Research, 2004, 109: D02103.
  • 2Hong Y, Adler RF,Huffman GJ. Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslidehazard assessment [J], Geophysical Research Letters, 2006,33: L22402.
  • 3Volkmann THM, Lyon SW, Gupta HV, Troch PA. Multicriteria design of rain gauge networks for flash flood prediction insemiarid catchments with complex terrain [J]. Water Resources Research, 2010,46: W11554.
  • 4Smith JA, Baeck ML, Zhang Y, Doswell CA. Extreme rainfall and flooding from supercell thunderstorms [J]. Journal ofHydrometeorology, 2001, 2: 469-489.
  • 5Hazenberg P, Leijnse H,and Uijlenhoet R. Radar rainfall estimation of stratiform winter precipitation in the Belgian Ardennes[J]. Water Resources Research, 2011,47: W02507.
  • 6Villarini G,Krajewski WF. Review of the different sources of uncertainty in single polarization radar-based estimates ofrainfall [J]. Surveys in Geophysics, 2010, 31: 107-129.
  • 7Mishra AK, Coulibaly P. Developments in hydrometric network design: A review [J]. Reviews of Geophysics, 2009, 47:RG2001.
  • 8Germann U, Galli G,Boscacci M, Bolliger M. Radar precipitation measurement in a mountainous region [J]. Quarterly Journalof the Royal Meteorological Society, 2006, 132: 1669-1692.
  • 9DelrieuG, Boudevillain B, Nicol J, Chapon B, Kirstetter PE, Andrieu H, Faure D. Bollene-2002 Experiment: RadarQuantitative Precipitation Estimation in the Cevennes-Vivarais Region, France [J]. Journal of Applied Meteorology andClimatology,2009, 48: 1422-1447.
  • 10张有芷,张少婕,王政祥.长江三峡区间暴雨洪水分析[J].人民长江,1999,30(3):11-13. 被引量:13

二级参考文献10

  • 1Kirkby M J. Hillslope hydrology [M]. Wiley- Interscience, New York, 1978.
  • 2Troutman B,Karlinger M. Unit hydrograph approximations assuming linear flow through topographically random channel networks [J]. Water Resource Research, 1985, 21(5):743-754.
  • 3Naden P. Spatial variability in flood estimation for large catchments: the exploitation of channel network structure [J]. Hydrological Science Journal, 1992, 37:53-71.
  • 4Robinson J, Sivapalan M & Snell J. On the relative roles of hillslope process, channel routing, and network geomorphology in the hydrologic response of natural catchments [J]. Water Resources Research, 1995, 31 (12): 3089-3101.
  • 5Yang D, Herath S & Musiake K. Analysis of geomorphologic properties extracted from DEMs for hydrological modeling [J]. Annual Journal of Hydraulic Engineering, JSCE, 1997, 41: 105-110.
  • 6Yang D, Herath S & Musiake K. Development of a geomorphology-based hydrological model for large catchments [J]. Annual Journal of Hydraulic Engineering, JSCE, 1998, 42:169-174.
  • 7Yang D, Herath S & Musiake K. Hillslope -based hydrological model using catchment area and width function [J]. Hydrological Sciences Journal, 2002, 47:49-65.
  • 8许继军,杨大文,蔡治国,金勇.基于分布式水文模拟的三峡区间洪水预报(I)——模型构建及验证[J].水文,2008,28(1):32-37. 被引量:13
  • 9葛守西.三峡水库洪水预报对城陵矶地区防洪补偿调节调度的有利条件[J].水利水电快报,1997,18(20):1-4. 被引量:2
  • 10张有芷,张少婕,王政祥.长江三峡区间暴雨洪水分析[J].人民长江,1999,30(3):11-13. 被引量:13

共引文献29

同被引文献136

引证文献9

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部