期刊文献+

基于LR模糊数据的线性回归模型 被引量:2

Linear regression model based on the LR fuzzy numbers
下载PDF
导出
摘要 LR模糊数据是实践中经常使用的由形状函数L及R、左右扩展及中心构成的模糊数.取值LR模糊数的随机变量称为模糊随机变量,其缺乏适宜的概率分布模型,导致模糊数据的线性回归模型缺乏显著性检验.文章基于Nther模糊随机变量线性回归分析工作,进一步给出LR模糊数据多元线性回归在δ2距离下的系数估计,并通过统计软件给出模型中非确定干扰变量的Bootstrap模拟分布. LR fuzzy data is a kind of fuzzy number with the shape function of L and R, left and right extension, and the center. Fuzzy random variables are random variables with values of LR fuzzy numbers. It lacks the appropriate probability distribution model, which leads to the difficulties of the significance test for fuzzy data linear regression model. Based on Nather's work of the fuzzy linear regression with fuzzy random variables, we give linear regression model in which both input and output data are LR fuzzy numbers, and get the coefficient estimates with δ^2 distance considered. Then, we give the Bootstrap simulating distribution for the uncertain disturbance variable of fuzzy linear regression model by statistical software.
出处 《广州大学学报(自然科学版)》 CAS 2014年第2期24-28,共5页 Journal of Guangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11271096)
关键词 模糊随机变量 线性回归 Bootstrap分布 Fuzzy random variables linear regression the Bootstrap distribution
  • 相关文献

参考文献10

  • 1TANAKA H, UEJIMA S, ASAI K. Linear regression analysis with fuzzy model[J]. IEEE Trans Sys Man Cybern, 1982, 12 (6) : 903-907.
  • 2WOLFGANG N. Regression with fuzzy random data[J]. Comput Stat Data Anal, 2006, 51 (1) : 235-252.
  • 3DIAMOND P, KORNER R. Extended fuzzy linear models and least squares estimates[ J]. Comput Math Appl, 1997, 33 (9) : 15-32.
  • 4WOLFGANG N. Random fuzzy variables of second order and applications to statistical inference [ J ]. Inf Sci, 2001, 133 (1/2) : 69-88.
  • 5WU H. The construction of fuzzy least squares estimators in fuzzy linear regression models[ J ]. Expert Sys Appl, 2011, 38 (1) : 13632-13640.
  • 6ZADEH L A. Fuzzy sets[J]. Inf Control, 1965, 8(3) : 338-353.
  • 7DIAMOND P, KLOEDEN P. Metric spaces of fuzzy sets[ M]. Singapore: World Scientific, 1994.
  • 8ARNOLD F S. Fuzzy random variables[J]. Insur: Math Econ, 2009, 44: 307-314.
  • 9AUMANN R J. Integrals of set-valued functions[ J]. J Math Anal Appl, 1965, 12(1 ) :1-12.
  • 10EFRON B, TIBSHIRANI J R. An introduction to the bootstrap[ M]. London: Chapman & Hall, 1993.

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部