期刊文献+

基于小波神经网络的液压泵故障类型识别 被引量:1

Fault Type Identification of Hydraulic Pump Based on Wavelet-neural Network
下载PDF
导出
摘要 根据液压泵发生故障所表现出来的特征,采用小波包能量值提取的办法作为故障类型识别的特征量,采用BP神经网络对输入的特征量进行识别。实验结果表明:采用小波神经网络对液压泵故障类型的识别可以取得满意的效果。 According to feature shown during hydraulic pump fault,the sampling method of energy of wavelet packet was used to identify feature value of fault type.Then,these input feature value were identified by using BP neural network.The experimental re-sults demonstrate that satisfactory result can be obtained by using wavelet-neural network to identify fault types of hydraulic pump.
出处 《机床与液压》 北大核心 2014年第11期177-180,共4页 Machine Tool & Hydraulics
关键词 液压泵 BP神经网络 小波包 特征值 Hydraulic pump BP neural network Wavelet packet Feature value
  • 相关文献

参考文献6

  • 1YOSHIDA H,KUMAR S. ARX and AFMM Model Based on Line Real-time Data Base Diagnosis of Sudden Fault in AHU of VAV System[ J]. Energy Conversion and Manage- ment, 1999,40( 11 ) : 1191 - 1206.
  • 2MARTIN K F. A Review by Discussion of Condition Moni- toring and Fault Diagnosis in Machine Tools [ J ]. Int. J. Math. Tools Mfg, 1994,34 (4) : 527 - 551.
  • 3MANRING N D,JOHNSON R E. Modelingand Designing a Variable-displacement Openloop Pump [ J ]. Trans. ASME, J. Dynamic Syst. Measmt and Control, 1996,118(2) :267 - 271.
  • 4敖银辉,汪宝生.钻头磨损检测与剩余寿命评估[J].机械工程学报,2011,47(1):177-181. 被引量:12
  • 5FUKUNAGA K. Introduction to Statistical Pattern Recogni- tion [ M ]. San Diego, CA, USA: Academic Press, Inc. 1992.
  • 6阮晓刚.神经计算科学[M].北京:国防工业出版社,2006:354-367.

二级参考文献10

  • 1叶大鹏,刘震,张春良.小波包隐Markov模型刀具状态识别研究[J].南华大学学报(自然科学版),2007,21(3):13-15. 被引量:1
  • 2ERKKI J. A summary of methods applied to tool condition monitoring in drilling[J]. Intemational Journal of Machine Tools&Manufacture, 2002, 42(10): 997-1010.
  • 3GOVERKAR E, GRABEC I. Self-organizing neural network application to drill wear classification[J]. Joumal of Engineering for Industry, 1994, 116(5): 233-238.
  • 4LIU TI, ANANTHARAMAN K S. Intelligent classification and measurement of drill wear[J]. Journal of Engineering of Industry, 1994, 116(15): 233-238.
  • 5GINGE Y, KECHIN L. Wavelet packet feature extraction for vibration monitoring[J]. IEEE Trans. on Industrial Electronics, 2000, 47(3): 650-667.
  • 6XIAO Li. On-line detection of the breakage of small diameter drills using current signature wavelet transform[J]. International Journal of Machine Tools & Manufacture, 1999, 39(1): 157-164.
  • 7JANTUNEN E, JOKINEN H. Automated on-line diagnosis of cutting tool condition (second version)[J]. International Journal of Flexible Automation and Integrated Manufacturing, 1996, 4(3): 273-287.
  • 8ALFONSO L. Sensorless tool failure monitoring system for drilling machines[J]. International Journal of Machine Tools&Manufacture, 2006, 46(5): 381-386.
  • 9FUKUNAGA K. Introduction to statistical pattern recognition [M]. San Diego: Academic Press Inc., 1992.
  • 10BROCKWELL P, DAVIS J, RICHARD A. Time series: Theory and methods [M]. New York: Springer, 1990.

共引文献12

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部