摘要
文章在rollout算法基础上研究了在多Agent MDPs的学习问题.利用神经元动态规划逼近方法来降低其空间复杂度,从而减少算法"维数灾".由于Rollout算法具有很强的内在并行性,文中还分析了并行求解方法.通过多级仓库库存控制的仿真试验,验证了Rollout算法在多Agent学习中的有效性.
The paper researches Rollout algorithms (RA) for multi-Agent Markov decision processes (MDPs) in the framework of performance potentials theory. Neuro-dynamic programming (NDP) is used to reduce "curse of dimensionality" of algorithms, Since to rolout algorithms has a very strong intrinsic parallelism,the parallelization method of RA is employed to reduce the time of running algorithms. Finally,an example of multi-level inventory control by using RA under the supply chain environment is provided. The result shows that rollout algorithms are confirmed to be valid in multi-Agent learning.
出处
《安徽工程大学学报》
CAS
2014年第2期75-78,共4页
Journal of Anhui Polytechnic University