期刊文献+

具有脉冲出生和垂直传染的双时滞SERIS传染病模型 被引量:4

Two time delays for a SEIRS epidemic model with pulse birth and vertical transmission
下载PDF
导出
摘要 考虑到某些种群的出生受季节变化的影响,建立了具有脉冲出生和垂直传染的双时滞SEIRS模型.利用频闪映射获得了无病周期解的表达式,并通过比较定理证明了当R0>1时,无病周期解全局吸引;当R*0时传染病持续. Considering the impact of some populations affected by seasonal changers, a delay SEIRS model with pulse birth and vertical transmission is proposed. Using the discrete dynamical system determined by the stroboscopic map, the exact expression of infection-free periodic solution is obtained. Further- more,by the comparison theorem,it is proved that the infection-free periodic solution is globally attractive when R0〈l and the disease is persistent when R0^*〉1.
出处 《安徽工程大学学报》 CAS 2014年第2期90-94,共5页 Journal of Anhui Polytechnic University
基金 国家自然科学基金资助项目(11302002) 安徽高校省级优秀青年人才基金资助项目(2010SQRL0256ZD 2011sqrl022ZD)
关键词 频闪映射 脉冲出生 持久性 比较定理 stroboscopic map pulse birth permanence comparison theorem
  • 相关文献

参考文献7

二级参考文献35

  • 1庞国萍,陶凤梅,陈兰荪.具有饱和传染率的脉冲免疫接种SIRS模型分析[J].大连理工大学学报,2007,47(3):460-464. 被引量:10
  • 2傅朝金,黄振华.时滞传染病模型的指数稳定性[J].生物数学学报,2007,22(2):237-242. 被引量:3
  • 3VANDEN D P, WATMOUGH J. A simple SIS epidemic model with a backward bifurcation[J]. Journal of Mathematical Biology, 2000, 40(6) :525-540.
  • 4VANDEN D P, WATMOUGH J. Epidemic solutions and endemic catastrophes[J]. Fields Institute Communications, 2003, 36(1) :247- 257.
  • 5ALEXANDER Me, MOGHADAS Sm. Periodicity in an epidemic model with a generalized non-linear incidence[J]. Mathematical Biosciences, 2004, 189(1) :75-96.
  • 6MENG Xinzhu, CHEN Lansun. Global dynamical behaviors for a SIR epidemic model with time delay and pulse vaccination[J]. Taiwan Residents Journal of Mathematics, 2008, 12(5) : 1107-1122.
  • 7MENG Xinzhu, CHEN Lansun. The dynamics of a new SIR epidemic model concerning pulse vaccination strategy[ J]. Applied Mathematics and Computation, 2008, 197(2) :582-597.
  • 8D' ONOFRIO Alberto. Stability properties of pulse vaccination strategy in SEIR epidemic model[J]. Mathematial Biosciences, 2002, 179 (1) : 57-72.
  • 9Beretta E. and Takeuchi Y., Convergence results in SIR epidemic model with variable population sizes [J], Nonlinear Analysis, Theory, Methods and Applications, 1999, 160:191-213.
  • 10Khan Q. J. A. K., Krishnan E. V. and Khodl A., An epidemic model with a timelay in transmission [J], Application of Mathematics, 2003, 48(3):193-203.

共引文献6

同被引文献36

  • 1K L Cooke.Stability analysis for a vector disease model[J].Rocky Mountain J.Math, 1979,9:31-42.
  • 2XU Rui, MA Zhi-en.Global stability of a SIR epidemic model with nonlinear incidence rate and time delay[J].Nonlinear Anal,2009,10:3 175-3 189.
  • 3ZHANG Tai-lei, TENG Zhi-dong.Global behavior and permanence of SIRS epidemic model with time delay[J].Nonlin- ear Anal, 2008,9 : 1 409-1 424.
  • 4K H attaf, A A Lashari, Y Louartassi, et al.A delays SIR epidemic model with general incidence rate[J].Electronic Jour- nal, 2013,3 : 1-9.
  • 5ZHANG Tong-qian, MENG Xin-zhu, ZHANG Tong-hua, et al.Global dynamics for a new highdimensional SIR model with distributed delay[J].Applied Mathematics and Computation, 2012,218 : 11 806-11 819.
  • 6JIN Zhen,MA Zhi-en, HAN Mao-an.Global gtability of an SIRS epidemic model with delays[J].Acta Mathematica Sci- entia, 1993, 26B(2): 291-306.
  • 7SONG Mei,MA Wan-biao,Y Takeuchi.Permanence of a delayed SIR epidemic model density dependent birth rate[J].J. Math, 2007,201 : 389-394.
  • 8MA Wan-biao, Y Takeuchi,T Hara,et al.Permanence of an SIR epidemic model with time delays[J].Tohoku Math.J, 2002,54:581-591.
  • 9HYMAN J M, LI Jia. Differential susceptibility epidemic models[J]. J Math Biol, 2005, 50(6):626-644.
  • 10XIANG Zhongyi, LONG Dan, SONG Xinyu. A delayed Lotka-Voherra model with birth pulse and impulsive effect at different moment on the prey[J]. Applied Mathematics and Computation, 2013, 219(20):10263-10270.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部