摘要
考虑到某些种群的出生受季节变化的影响,建立了具有脉冲出生和垂直传染的双时滞SEIRS模型.利用频闪映射获得了无病周期解的表达式,并通过比较定理证明了当R0>1时,无病周期解全局吸引;当R*0时传染病持续.
Considering the impact of some populations affected by seasonal changers, a delay SEIRS model with pulse birth and vertical transmission is proposed. Using the discrete dynamical system determined by the stroboscopic map, the exact expression of infection-free periodic solution is obtained. Further- more,by the comparison theorem,it is proved that the infection-free periodic solution is globally attractive when R0〈l and the disease is persistent when R0^*〉1.
出处
《安徽工程大学学报》
CAS
2014年第2期90-94,共5页
Journal of Anhui Polytechnic University
基金
国家自然科学基金资助项目(11302002)
安徽高校省级优秀青年人才基金资助项目(2010SQRL0256ZD
2011sqrl022ZD)
关键词
频闪映射
脉冲出生
持久性
比较定理
stroboscopic map
pulse birth
permanence
comparison theorem