期刊文献+

基于改进人工蜂群算法的多机飞行冲突解脱策略 被引量:11

Research on Multi-Aircraft Confliction Resolution Based on A Modified Artificial Bee Colony Algorithm
下载PDF
导出
摘要 针对同一空域内多无人机飞行冲突解脱问题,提出了一种基于改进人工蜂群算法的冲突解脱策略。在传统蜂群算法的基础上改进了跟随蜂对雇佣峰的选择概率及跟随蜂的搜索策略,发挥了迭代过程中最优解的引导作用,保持了传统人工蜂群算法全局搜索和跳出局部最优的能力,解决了传统人工蜂群算法局部搜索效率较低的问题,提升了收敛性能,增加了得到最优解的概率。利用该算法通过航向调整和速度调整2种策略实现了多机的冲突解脱。对比仿真结果验证:该方法在收敛速度、运行速度和最优解的适应度等方面都较遗传算法有很大提升。 Aiming at the problem of multiple UAVs confliction resolution,a scheme based on modified artifi-cial bee colony (MABC)algorithm was proposed.On the basis of the artificial bee colony (ABC)algo-rithm,the probability function and searching mechanism for the onlooker bees are modified to make the best solution play the role of guidance to enhance the exploitation capability and improve the convergence performance.The abilities for exploration and j umping out from local optimum are kept.Both of heading change resolution and speed change resolution are utilized to solve the confliction.The results demonstrate good performance for the convergence speed,running speed and the fitness value of best solution when compared with genetic algorithm.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2014年第3期10-14,共5页 Journal of Air Force Engineering University(Natural Science Edition)
基金 航空科学基金资助项目(20121396008)
关键词 人工蜂群算法 多机飞行冲突 冲突解脱 收敛性能 artificial bee colony algorithm multi-vehicle confliction confliction resolution convergence performance
  • 相关文献

参考文献10

  • 1Albaker B M,Rahim N A. Straight projection conflictdetection and cooperative avoidance for autonomous unmanned aircraft systems [J]. IEEE ICIEA, 2009 : 1965-1969.
  • 2吴君,张京娟.采用遗传算法的多机自由飞行冲突解脱策略[J].智能系统学报,2013,8(1):16-20. 被引量:19
  • 3王洁宁,袁志娟.基于粒子群算法的飞行冲突解脱问题[J].中国民航大学学报,2010,28(4):1-4. 被引量:8
  • 4GANG Xiao, BO Gu. An improved ant colony opti- mization approach for multi-aircraft horizontal escape maneuvers [C]//31st digital avionics systems confer- enee.[S.1.] : IEEE press, 2012 : 14-18.
  • 5段海滨,张祥银,徐春芳.仿生智能计算[M].北京:科学出版社,2010.
  • 6Abu-Mouti Fahad S,El-Hawary Mohamed E. Over- view of artificial bee colony (ABC) algorithm and its applications[C]// 1EEE systems conference. [S.I.]: IEEE press, 2012 : 1-6.
  • 7Tarun Kumar Sharma, Millie Pant. Artificial bee col- ony with mean mutation operator for better exploita- tion[C]//WCCI 2012 IEEE world congress on com- putational intelligence. [S. 1.] : 1EEE press, 2012 : 10 - 15.
  • 8Albaker B M, Rahim N A. Unmanned aircraft colli- sion detection and resolution: concept and survey [C]//Sth IEEE conference on industrial electronics and applicationsis.[S.1.]:IEEE press,2010z248-253.
  • 9王久崇,樊晓光,盛晟,黄雷.改进的蜂群LS-SVM故障预测[J].空军工程大学学报(自然科学版),2013,14(1):16-19. 被引量:7
  • 10Basturk B,Karaboga D.An artificial bee colony (ABC) al- gorithm for numeric function optimization [C]//IEEE swarm intelligence symposium.[S. 1.] : IEEE press, 2006 : 12-14.

二级参考文献31

  • 1戴林超,吴琳丽,赵海娜,李训铭.基于最小二乘支持向量机的故障预测法[J].中南大学学报(自然科学版),2009,40(S1):253-257. 被引量:18
  • 2张军.现代空中交通管理[M].北京:北京航空航天大学出版,2003,7.
  • 3ALLIOT J M, GRUBER H, JOLY G, et al. Genetic Algorithms for Solving Air Traffic Control Conflicts[C]//The Ninth Conference on Artificial Intelligence for Applications, 1993: 338-344.
  • 4NEERA SOOD, SANDEEP MULGUND, CRAIG WANKE, et al. A Multi-Objective Genetic Algorithm for Solving Airspace Congestion Problems[C]//AIAA Guidance, Navigation and Control Conference, 2007.
  • 5VORMER F J, MULDER M,VAN PAASSEN M M,et al. Optimization of flexible approach trajectories using a genetic algorithm[J]. Journal of Aircraft, 2006,43 (4) : 941-952.
  • 6BURDUN I Y. An AI Situational Pilot Model for Real-Time Applications[C]//Proceedings of the 20th Congress of the International Council of the Aeronautical Sciences, Sorrento,Napoli,Italy, September 8-13, 1996: 210-237.
  • 7FULTON N L. Airspace design: towards a rigorous specification of Complexity based on computational geometry[J]. Aeronautical Journal, 1999,103(1020) :75-84.
  • 8KENNEDY J, EBERHART R C. Particle Swarm Optimization[C]//Proc IEEE International Conference on Neural Networks: IV. Piscataway, NJ: IEEE Service Center, 1995 : 1942-1948.
  • 9EBERHART R C, SHI Y. Particle Swarm Optimization: Developments, Applications and Resources[C]//Proc Congress on Evolutionary Computation 2001. Piscataway, NJ: IEEE Press, 2001 : 81-86.
  • 10KENNEDY J. Small WoAds and Mega-Minds: Effects of Neighborhood Topology on Particle Swarm Performance[C]//Proceedings of the Congress on Evolutionary Computation. Piscataway,NJ:IEEE Press, 1999: 1931-1938.

共引文献37

同被引文献115

  • 1裴志刚,李华星,王庆胜.模拟退火遗传算法在飞行冲突解脱中的应用[J].交通与计算机,2005,23(1):115-117. 被引量:7
  • 2魏志强.基于最小成本的高度能力计算方法[J].交通运输工程学报,2005,5(2):77-79. 被引量:7
  • 3程丽媛,韩松臣,刘星.采用内点约束的最优冲突解脱方法[J].交通运输工程学报,2005,5(2):80-84. 被引量:12
  • 4朱代武.低空空域飞行冲突避让算法[J].交通运输工程学报,2005,5(3):73-76. 被引量:20
  • 5Kuchar J K,Yang L C. A review of conflict detection and resolution modeling methods[J]. IEEE Transactions on Intelligent Transportation Systems,2000,1(4):179- 189.
  • 6Hojjat E,Kamyar N. A comparison framework for conflict detection and resolution multi agent modeling methods in air traffic management[J]. International Journal of Information Technology, Control and Automation(IJITCA),2012,2(4):51-64.
  • 7David S,Premysl V,Michal pechoucek. Agentbased cooperative decentralized airplane-collision avoidance[J]. IEEE Transactions on Intelligent Transportations Systems,2011,12(1):36-46.
  • 8Miguel A V,Colin G. Application of distributed artificial intelligence in autonomous aircraft operations[C]. 20th Conference on Digital Avionics Systems. Daytona Beach,FL:IEEE,2001:7B3/1-7B3/14.
  • 9Michael H,George M,Stefan R. An agent based framework for control of merging air-traffic[C]. In Proceedings 16th IFAC Symposium on Automatic Control in Aerospace. St. Petersburg,Russia, 2004.
  • 10Magnus L,Andrew L. The OASIS air traffic management system[C]. Proceedings of the Second Pacific Rim International Conference on Artificial Intelligence, PRICAI. Seoul,Korea, 1992.

引证文献11

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部