期刊文献+

一类p元最优线性码和低相关性线性序列的构造

Construction of a Family of p-ary Optimal Linear Codes and Low Correlation Linear Sequences
下载PDF
导出
摘要 在信息理论中,最优线性码具有很强的纠错能力、低相关性线性序列在密码系统和CDMA通信系统中得到了广泛应用.因此构造最优线性码和构造低相关性线性序列具有重要的研究价值.记R=Fp+uFp,这里的p为奇素数.本文首先通过迹映射构造出环R上的一类新的线性码,然后将这类新的线性码的删余码通过Gray映射得到了域Fp上一类最优码.同时,通过迹映射构造出环R上的一类线性循环码,将这类线性循环码视为线性周期序列并通过广义Nechaev-Gray映射得到了域Fp上一类低相关线性周期序列. In information theory, optimal linear codes have good capability in error-correcting in coding theory and linear se- quences with low correlation have been widely used in cryptography and CDMA systems. Therefore, it has great value to study the conslruction of optimal linear codes and low correlation linear sequences. Let R = Fp + uFp, where p is an odd prime. A class of new linear codes over R is constructed by means of the/race map. Then a kind of optimal codes over Fp is obtained via the Gray map from the punctured new linear codes. Furthermore, a class of new linear cyclic codes over R is also constructed by means of the trace map. A kind of low correlation linear sequences over Fp is observed via the generalized Nechaev-Gray map from the class of new linear cyclic codes, which are regarded as a class of linear periodic sequences.
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第3期572-577,共6页 Acta Electronica Sinica
基金 安徽省自然科学基金(No.1208085MA14 No.1408085QF116) 安徽省高校省级科学研究项目(No.KJ2013B217 No.KJ2013B220 No.KJ2013B221) 合肥师范学院一般研究项目(No.2012kj10) 国家自然科学基金(No.61370089)
关键词 迹映射 最优线性码 低相关性 线性序列 trace map optimal linear codes low correlation linear sequences
  • 相关文献

参考文献21

  • 1Nechaev A.Kerdock code in a cyclic form[J].Discrete Mathematics Applications,1991,1(4):365-384.
  • 2Hammons A R,Kumar Jr P V,Calderbank A R,et al.The Z4-linearity of Kerdock,Preparata,Goethals and related codes[J].IEEE Transactions on Information Theory,1994,40(2):301-319.
  • 3Wan Z X.Quaternary Codes[M].Singapore:World Scientific,1997.93-112.
  • 4Bachoc C.Application of coding theory to the construction of modular lattices[J].Journal of Combinational Theory,Series A,1997,78(1):92-119.
  • 5Bonnecaze A,Udaya P.Cyclic codes and self-dual codes over F2+uF2[J].IEEE Transactions on Information Theory,1999,45(4):1250-1255.
  • 6Shixin ZHU,Yongsheng TANG.A MACWILLIAMS TYPE IDENTITY ON LEE WEIGHT FOR LINEAR CODES OVER F_2+uF_2[J].Journal of Systems Science & Complexity,2012,25(1):186-194. 被引量:3
  • 7施敏加,杨善林,朱士信.环F2+uF2上长度为2^e的循环码的距离[J].电子学报,2011,39(1):29-34. 被引量:13
  • 8Dinh H Q,Nguyen H D T.On some classes of constacyclic codes over polynomial residue rings[J].Advances in Mathematics of Communications,2012,6(2):175-191.
  • 9Zhu S X,Wang L Q.A class of constacyclic codes over Fp+vFp and its Gray image[J].Discrete Mathematics,2011,311(23-24):2677-2682.
  • 10Minjia SHI,Shanlin YANG,Shixin ZHU.GOOD p-ARY QUASIC-CYCLIC CODES FROM CYCLIC CODES OVER F_p+vF_p[J].Journal of Systems Science & Complexity,2012,25(2):375-384. 被引量:5

二级参考文献37

  • 1李平,朱士信.环F2+uF2上长为2^e的循环码[J].电子与信息学报,2007,29(5):1124-1126. 被引量:16
  • 2Taher Abualrub, Robert Oehmke. On the generators of cyclic codes of length 2e [J]. IEEE Trans Inform Theory, 2003,49 (9) :2126 - 2133.
  • 3Xiaoshan Kai, Shixin Zhu. On the distances of cyclic codes of length 2e over Z4[J]..Discrete Mathematics,2010, 310( 1 ) : 12 - 20.
  • 4H Q Dinh. Complete distances of all negacyclic codes of length 2^s over Z2^a [J ]. IEEE Trans Inform Theory, 2007,53 ( 1 ) : 147 - 161.
  • 5H Q Dinh. Constacyclic codes of length 2s over Galois extension rings of F2 + uF2 [ J ]. IEEE Trans Inform Theory, 2009,55(4):1730 - 1740.
  • 6H. EI Gamal, A. R. Hammons Jr., Y. Liu, and O. Y. Takeshiti, On the design of space-time and space-frequency codes for MIMO frequency-selective fading channels, IEEE Trans. Inform. Theory, 2003, 49: 2277-2292.
  • 7Y. Liu, M. P. Fitz, and O. Y. Takeshiti, A rank criterion for QAM space-time codes, IEEE Trans. Inform. Theory, 2002, 48:3062-3079.
  • 8V. Tarokh, N. Seshadri, and A. R. Calderbank, Space-time codes for high data rate wireless com- munication: Performance criterion and construction, IEEE Trans. Inform. Theory, 1998, 44: 744-765.
  • 9A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Solance, and P. Sole, The Z4 linearity of Kerdoek, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 1994, 40:301-319.
  • 10S. T. Dougherty, P. Gaborit, M. Harada, and P. Sole, Type II codes over F2 + uF2, IEEE Trans. Inform. Theory, 1999, 45:32-45.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部