期刊文献+

小生境演化算法下的WDCT图像压缩方法 被引量:2

WDCT Image Compression Based on Niching Evolutionary Algorithm
下载PDF
导出
摘要 针对传统WDCT图像压缩编码算法频率卷曲参数的难选取问题,提出了小生境演化算法下的WDCT图像压缩方法(NEAWDCT).利用小生境演化算法全局寻优的特点,与WDCT图像压缩编码方法相结合,达到自适应选取最优频率卷曲参数的目的.针对频率卷曲参数特征,设计染色体编码方式及演化算子,以加快收敛速度.由于图像能量多集中于低频部分,选择特定范围内的数值初始化种群,不仅能加快算法收敛速度,还保留了种群的多样性.实验结果表明,利用新的NEAWDCT算法生成的WDCT矩阵能有效提高峰值信噪比. In order to select the frequency warping parameter in WDCT image compression ,this paper presents a new algo-rithm-WDCT image compression algorithm based on niching evolutionary algorithm (NEAWDCT) .With the global optimization of niching evolutionary algorithm ,it is combined with WDCT image compression algorithm to select the optimal parameter adaptively . To improve the convergence speed ,the coding methods and evolutionary operators are designed according to the parameter charac-teristics .The energy of image signal ordinarily is distributed in the part with lower frequency ,therefore population initialized by some numbers in certain interval .The initial population can improve the convergence speed and maintain the population diversity . The experiments show that the new algorithm (NEAWDCT) can improve the peak signal to noise ratio effectively .
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第4期809-814,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.70971043) 广东省科技攻关项目(No.2012A020602037) 江西省教育厅科学技术研究项目(No.GJJ12348 No.GJJ12368)
关键词 图像压缩 卷曲离散余弦变换 频率卷曲参数 小生境演化算法 image compression WDCT frequency warping parameter niching evolutionary algorithm
  • 相关文献

参考文献9

二级参考文献31

  • 1纪秀花.适于低码率图像编码的DCT快速算法[J].计算机辅助设计与图形学学报,2004,16(10):1355-1359. 被引量:5
  • 2蒋峥,戴连奎,吴铁军.区间非线性规划问题的确定化描述及其递阶求解[J].系统工程理论与实践,2005,25(1):110-116. 被引量:14
  • 3马维祯.利用子波变换的图象压缩编码技术[J].信号处理,1995,11(3):129-138. 被引量:23
  • 4纪秀花,张彩明.适于图像解压的离散余弦逆变换快速算法[J].计算机学报,2005,28(12):2079-2088. 被引量:3
  • 5Pennebaker W B, Mitchell J L. JPEG Still Image Data Compression Standard[S]. New York: Van Nostrand Reinhold, 1993
  • 6Mitchell J L, Pennebaker W B, Fogg C E, et al. MPEG Video Compression Standard [S]. New York: Chapman and Hall, 1997
  • 7Feig E, Winograd S. Fast algorithms for the discrete cosine transform [J]. IEEE Trans on Signal Processing, 1992, 40 (9) : 2174-2193
  • 8Leoffler C, Ligtenberg A, Moschytz G S. Practical fast 1D DCT algorithms with 11 mutiplications [C] //Proc of IEEE ICASSP. Glasgow, Scotland: Causal Productions, 1989
  • 9Lee B G. A new algorithm to compute the discrete cosine transform [J]. IEEE Trans on Acoust.,Speech, Signal Processing, 1984, 32(6) : 1243-1245
  • 10Chen W H, Smith C H, Fralick S C. A fast computational algorithm for the discrete cosine transform [J]. IEEE Trans on Communications, 1977, 25(9): 1004-1009

共引文献22

同被引文献20

  • 1Qu B Y,Suganthan P N,Liang J J.Differential evolution with neighborhood mutation for multimodal optimization[J].IEEE Transactions on Evolutionary Computation,2012,16(5):601-614.
  • 2Hansen N,Ostermeier A.Completely derandomized self-adaptation in evolution strategies[J].Evolutionary Computation,2001,9(2):159-195.
  • 3Hansen N.The CMA Evolution Strategy:A Comparing Review[M].Berlin:Springer,2006.75-102.
  • 4Preuss M.Niching the CMA-ES via nearest-better clustering[A].Proceedings of the 12th Annual Conference Companion On Genetic and Evolutionary Computation[C].Portland:ACM,2010.1711-1718.
  • 5Stoean C,Preuss M,Stoean R,et al.Multimodal optimization by means of a topological species conservation algorithm[J].IEEE Transactions on Evolutionary Computation,2010,14(6):842-864.
  • 6Li X D,et al.Benchmark Functions for CEC'2013 Special Session and Competition on Niching Methods for Multim-odal Function Optimization[R].Melbourne:RMIT University,Evolutionary Computation and Machine Learning Group,2013.1-10.
  • 7Vitela J E,Casta?os O.A sequential niching memetic algorithm for continuous multimodal function optimization[J].Applied Mathematics and Computation,2012,218(17):8242-8259.
  • 8Pereira M W,et al.A topological niching covariance matrix adaptation for multimodal optimization[A].Proc of IEEE Congress on Evolutionary Computation[C].Betjing:IEEE,2014.2562-2569.
  • 9Shir O M,Emmerich M,Back T.Adaptive niche radii and niche shapes approaches for niching with the CMA-ES[J].Evolutionary Computation,2010,18(1):97-126.
  • 10Auger A,Hansen N.A restart CMA evolution strategy with increasing population size[A].Proc of IEEE Congress on Evolutionary Computation[C].Edinburgh,Scotland:IEEE,2005.1769-1776.

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部