期刊文献+

基于合作模型的协同免疫多目标优化算法 被引量:9

A Cooperative Immune Coevolutionary Algorithm for Multi-Objective Optimization
下载PDF
导出
摘要 本文针对多目标优化问题Pareto最优解集合(PS)的分布特点,构造了一种基于新的子任务划分方法的合作型协同进化模型,并将该模型引入人工免疫系统中,提出了一种基于合作模型的协同免疫多目标优化算法(A Cooperative Immune Coevolutionary Algorithm for Multiobjective Optimization,CICAMO).CICAMO算法运用Tchebycheff分解方法进行子种群划分,然后对各个子种群建立线性概率统计模型分段逼近整个PS,在抗体繁殖上结合了克隆选择和模型采样两种方式.实验结果表明,CICAMO算法在求解质量和收敛速度上均表现良好,尤其对于决策变量非线性相关的多目标优化问题,性能尤为突出. According to the distribution characteristics of the Pareto set (PS) of multi-objective optimization problems (MOPs), a cooperative coevolutionary model with new problem decomposition method was designed. By introducing the proposed coevolutiunary model into artificial immune system, a cooperative immune coevolutionary algorithm for multi-objective optimization (CICAMO) was proposed.In CICAMO,the Tchebycheff decomposition method is employed to divide sub-populations at first, and then linear probabilistic models are built for each sub-population to piecewise approximate the distribution of the whole PS. In anti- body reproducing step, two types of approaches based on clonal selection and model sampling are employed. Experimental results in- dicate that CICAMO can achieve a good performance in terms of both solution quality and convergence rate, especially when solving MOPs with non-linear relationship between decision variables.
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第5期858-867,共10页 Acta Electronica Sinica
基金 国家教育部博士点基金(No.20090203120016 No.20100203120008) 中国博士后科学基金(No.20090461283 No.20090451369 No.201104658) 陕西省自然科学基础研究计划(No.2011JQ8010) 中央高校基本科研业务费专项资金(No.K5051203007 No.K5051203002 No.K5051302023) 国家自然科学基金(No.61272279) 新世纪支持计划(No.NCET-12-0920) 国家重点基础研究发展计划(No.2013CB329402) 高等学校学科创新引智计划(No.B07048) 教育部长江学者和创新团队发展计划(No.IRT1170)
关键词 多目标优化 人工免疫算法 协同进化 multi-objective optimization artificial immune algorithm co-evolutionary algorithm
  • 相关文献

参考文献31

  • 1Deb K. Multi-Objective Optimization Using Evolutionary Algo- dthms[M]. Wiley,New York, 2001.
  • 2C A Coello Coello. Evolutionary multi-objective optimization: a historical view of the field[ J ]. IEEE Computational Intelligence Magazine,2006,1(1) :28 - 36.
  • 3M A Potter, K A De Jong. A cooperative co-evolutionary ap- proach to function optimization[ A]. Proceedings of the Parallel Problem Solving from Nature[ C]. Berlin: Springer, 1994. 249 - 257.
  • 4Yang Zhenyu, Tang Ke, Yao Xin. Large scale evolutionary op- timization using cooperative co-evolution[J]. Information Sci- ences,2008,178(15) :2985 - 2999.
  • 5C K Goh, K C Tan, D S Liu, S C Chiam. A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design [J]. European Jourllal of Operational Research,2010,202( 1 ) :42 - 54.
  • 6S G Ficici. Multi-objective optimization and co-evolution[ A]. Multi-Objective Problem Solving from Nature [ M ]. Berlin: Springer,2008.31 - 52.
  • 7A W Iorio,X Li. A cooperative coevolutionary multi-objective algorithm using non-dominated sorting[ A] .Proceedings of Ge- netic and Evolutionary Computation [ C ]. Berlin: Springer, 2004.537 - 548.
  • 8K Maneeratana, K Booulong, N Chalyaratana. Multi-objective optimisafion by co-operative co-evolution[ A ]. Proceedings of the Parallel Problem Solving from Nature [ C ]. Berlin: Springer, 2004.772 - 781.
  • 9K C Tan, Y J Yang, C K Goh. A distributed cooperative co- evolutionary algorithm for multi-objective optimization [J]. IEEE. Transactions on Evolutionary Computation, 2006, 10(5) : 527 - 549.
  • 10C K Goh, K C Tan. A competitive-cooperative co-evolutionary paradigm for dynamic multi-objective optimization [ J ]. IEEE Transactions on Evolutionary Computation, 2009, 13 ( 1 ) : 103 - 127.

二级参考文献82

共引文献242

同被引文献80

  • 1罗小平,韦巍.生物免疫遗传算法的几乎处处强收敛性分析及收敛速度估计[J].电子学报,2005,33(10):1803-1807. 被引量:11
  • 2徐大明,康龙云,曹秉刚.基于NSGA-Ⅱ的风光互补独立供电系统多目标优化[J].太阳能学报,2006,27(6):593-598. 被引量:38
  • 3蒋亚平,李涛,梁刚,徐春林,黄雪梅,王铁方.一种基于免疫原理求解TSP问题的模型[J].计算机工程,2006,32(15):165-167. 被引量:11
  • 4李学哲.基于MOIA的脉搏波峰值并行搜索的研究[J].计算机工程与应用,2007,43(15):246-248. 被引量:1
  • 5Zitzler E ,Thiele L. Evolution Algorithms for Muti-objective Optimization:Methods and Application[M]. Zurich:Swiss Federal Institute of Tech- nology, 1999 : 114.
  • 6Zitzler E,Thiele L. Evolutionary algorithms :a comparative case study and the strength pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999,3 (4) :257-271.
  • 7Aickelin U, Dipankar D, Feng G. Search Methodologies: Ina'o- ductory Tutorials in Optimization and Decision Support Tech- niques[ M]. Berlin: Springer, 2014.187 - 211.
  • 8Luo Y M, Liao M H, Yan J. Development and demonstration of an artificial immune algorithm for mangrove mapping using landsat TM[ J]. IEEF. Transactions on Geoscience and Remote Sensing Letters,2013,10(4) :751 - 755.
  • 9Liu X Y, Zhang A L, Gao Y L, Zhao W. A novel hybrid im- mune algorithm and its convergence based on the steepest de- scent algorithm [ J ]. Applied Mathematics and Computation, 2011,218(4) : 1291 - 1296.
  • 10Dasgupta D, Yu S H,Femando N.Recent advances in artificial immune systems: models and applications [ J ]. Applied Soft Compuling,2011,11 (2) : 1574 - 1587.

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部