摘要
本文针对多目标优化问题Pareto最优解集合(PS)的分布特点,构造了一种基于新的子任务划分方法的合作型协同进化模型,并将该模型引入人工免疫系统中,提出了一种基于合作模型的协同免疫多目标优化算法(A Cooperative Immune Coevolutionary Algorithm for Multiobjective Optimization,CICAMO).CICAMO算法运用Tchebycheff分解方法进行子种群划分,然后对各个子种群建立线性概率统计模型分段逼近整个PS,在抗体繁殖上结合了克隆选择和模型采样两种方式.实验结果表明,CICAMO算法在求解质量和收敛速度上均表现良好,尤其对于决策变量非线性相关的多目标优化问题,性能尤为突出.
According to the distribution characteristics of the Pareto set (PS) of multi-objective optimization problems (MOPs), a cooperative coevolutionary model with new problem decomposition method was designed. By introducing the proposed coevolutiunary model into artificial immune system, a cooperative immune coevolutionary algorithm for multi-objective optimization (CICAMO) was proposed.In CICAMO,the Tchebycheff decomposition method is employed to divide sub-populations at first, and then linear probabilistic models are built for each sub-population to piecewise approximate the distribution of the whole PS. In anti- body reproducing step, two types of approaches based on clonal selection and model sampling are employed. Experimental results in- dicate that CICAMO can achieve a good performance in terms of both solution quality and convergence rate, especially when solving MOPs with non-linear relationship between decision variables.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2014年第5期858-867,共10页
Acta Electronica Sinica
基金
国家教育部博士点基金(No.20090203120016
No.20100203120008)
中国博士后科学基金(No.20090461283
No.20090451369
No.201104658)
陕西省自然科学基础研究计划(No.2011JQ8010)
中央高校基本科研业务费专项资金(No.K5051203007
No.K5051203002
No.K5051302023)
国家自然科学基金(No.61272279)
新世纪支持计划(No.NCET-12-0920)
国家重点基础研究发展计划(No.2013CB329402)
高等学校学科创新引智计划(No.B07048)
教育部长江学者和创新团队发展计划(No.IRT1170)
关键词
多目标优化
人工免疫算法
协同进化
multi-objective optimization
artificial immune algorithm
co-evolutionary algorithm