期刊文献+

一类新的周期为p^(m+1)q^(n+1)的二元广义分圆序列的线性复杂度 被引量:1

The Linear Complexity of a New Class of Generalized Cyclotomic Binary Sequences of Length p^(m+1)q^(n+1)
下载PDF
导出
摘要 提出了一类新的周期为pm+1qn+1,p和q为不同的奇素数,m和n为正整数的广义分圆序列,并计算了该序列的线性复杂度.新构造的序列具有平衡的优点. A new class of generalized cyclotomic binary sequence of length pm+1qn+1 is proposed in this paper, where p and q are distinct odd primes. The linear complexity of the proposed sequence is also determined. Furthermore, the proposed sequence is balanced.
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第5期1009-1013,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.61102093 No.U1304604)
关键词 有限域 广义分圆 线性复杂度 fmite field generalized cyclotomy linear complexity
  • 相关文献

参考文献11

  • 1Golomb S W, Gong G. Signal Design for Good Correlation: For Wireless Communications, Cryptography and Radar Applica- tions[M]. Cambridge University Press,2005.
  • 2Cusick T, Ding C, Renvall A. Stream Ciphers and Number The- ory[ M]. North-Holland Mathematical Library 55, 1998. 198 - 212.
  • 3Edemskiy V. About computation of the linear complexity of generalized cyclotomic sequences with period pnl[ j]. De_ signs Codes and Cryptography, 2011,61 (3) : 251 - 260.
  • 4Ke P H, Zhang J, Zhang S Y. On the linear complexity and the autocorrelation of generalized cyclotomic binary sequences of length 2pm[ J] .Designs Codes and Cryptography,2012,67(3): 325 - 339.
  • 5Hu L Q, Yue Q, Wang M H. The linear complexity of White- man's generalized cyclotomic sequences of period pm+ 1 qn + 1 [ J ]. IEEE, Transactions on Information Theory, 2012, 58 (8) : 5534 - 5542.
  • 6Yah T, Li S, Xiao G. On the linear complexity of generalized cyclotomic sequences with the period p [ J ]. Applied Mathe- matics Letters,2008,21 : 187 - 193.
  • 7Ding C, Helleseth T. Generalized cyclotomy and its applications [ J ]. Finite Fields and Their Applications, 1999,4:467 - 474.
  • 8Ding C, HeUseth T, Shan W. On the linear complexity of Leg- entire sequences[ J]. IEEE Transactions on Information Theory, 1998,44:1276 - 1278.
  • 9Du X N, C"nen Z X. A generalization of the Hall's sextic residue sequences [ J ]. Information Sciences, 2013,222:784 - 794.
  • 10杜小妮,陈智雄.关于Legendre序列迹表示的注记[J].电子学报,2011,39(4):869-871. 被引量:2

二级参考文献26

  • 1李赞,常义林,蔡觉平,王育民.基于分组密码的跳频序列族构造[J].电子学报,2005,33(4):620-623. 被引量:10
  • 2梅文华,杨义先.基于GF(p^k)上m序列的最佳跳频序列族[J].通信学报,1996,17(2):12-16. 被引量:8
  • 3C Ding, T HeUeseth, W Shan. On the linear complexity of Legendre sequence [ J]. IEEE Transactions on Information Theory, 1998,44(3) : 1276 - 1278.
  • 4H Aly, A winterhof. On the k-error linear complexity over Fp of Legendre and Sidelnikov sequences [J]. Designs, Codes and Cryptography, 2006,40 (3) : 369 - 374.
  • 5I Damgaard. On the randomness of Legendre and Jacobi sequences [A]. Advances in Cryptology: CRYPTO' 88 [C]. LNCS 403. Berlin: Springer-Verlag, 1990. 163 - 172.
  • 6C Ding. Pattern distributions of Legendre sequences [J]. IEEE Transactions on Information Theory, 1998,44(4) : 1693 - 1698.
  • 7J Marcel, E Golay. The merit factor of Legendre sequences [J]. IEEE Transactions on Information Theory, 1983,29(6): 934 - 936.
  • 8J S No, H K Lee, et al. Trace representation of Legendre sequences of Mersenne prime period [ J ]. IEEE Transactions on Information Theory, 1996,42(6) :2254 - 2255.
  • 9J H Kirn. Trace representation of Legendre sequences [J]. Design, Codes and Cryptography, 2001,24 ( 3 ) : 343 - 48.
  • 10R Lidl, H Neiderreiter. Finite Fields [ M ]. In Encyclopedia Math. Its Applic.. Reading, MA: Addison-Wesley, 1983.

共引文献15

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部