期刊文献+

基于连续小波变换的Hilbert包络线松动部件定位方法 被引量:3

Hilbert Envelope Loose Part Location Method Based on Continuous Wavelet Transform
下载PDF
导出
摘要 本文结合时-频域信号处理方法,在对冲击信号进行连续小波变换(CWT)的基础上,采用计算信号Hilbert包络线极大值的方法确定冲击信号的到达时间,并应用于网格定位。研究结果表明,该方法具有较高的定位精度,对小质量的松动部件能准确地定位其位置,且具有较好的抗噪能力。 In this paper ,combined with time-frequency analysis ,the impact signal arri-val time was determined by the method of calculating the Hilbert envelope maximum based on the analysis of impact signal by continuous wavelet transform (CWT ) ,and it was applied to grid localization The results show that this method has strong anti-interference capacity and high locating accuracy ,and for the small mass loose parts it also can accurately locate their position .
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2014年第6期1087-1095,共9页 Atomic Energy Science and Technology
基金 科技部国家科技重大专项资助项目(2010ZX06001-001) 2012年浙江省公益性技术应用研究项目资助(2012C23017)
关键词 核电站 松动部件 定位 连续小波变换 希尔伯特变换 nuclear power plant loose part location continuous wavelet transform Hilbert transform
  • 相关文献

参考文献4

二级参考文献21

  • 1FIGEDY S, OKSA G. Modern methods of signal processing in the loose part monitoring system[J]. Progress in Nuclear Energy, 2005, 46(3): 253-267.
  • 2KIM Y B, KIM S J, CHENG H D. A study on technique to estimate impact location of loose part using Wigner-Ville distribution[J]. Progress in Nuclear Energy, 2003, 43: 261-266.
  • 3PARK J H, KIM Y H. Impact source localization on an elastic plate in a noisy environment[J]. Measurement Science and Technology, 2006, 17:2 757-2 766.
  • 4JEONG S N, WOO K H, HWANG E T. A study on the estimation method of impact position using the frequency analysis[C]// The 1st International Forum on Strategic Technology, October 18-20, 2006, Ulsan. IEEE IFOST, 2006: 392-395.
  • 5PARK G Y, CHEON S W, LEE C K. An estimation method for impact location of loose parts[J]. Progress in Nuclear Energy, 2006, 48: 360-370.
  • 6DUGU-NDJI J. Envelopes and pre-envelopes of real waveforms[J]. Ire Transactions on Information Theory, 1958: 53-57.
  • 7CREMER L, HECKL M, UNGAR E. Structure-borne sound[M], 2nd ed. Berlin: Springer-Verlag, 1988.
  • 8FAHY F. Sound and structural vibration[M]. London: Academic Press, 1985.
  • 9[1]Grossman Al, Morlet J. Decomposition of Hardy function into square integrable wavelets of constant shape. SIAM J. Math. Anal.,1984,15:723~726
  • 10[2]Mallat S. Zero-Crossing of a Wavelet Transform IEEE Trans on Information Theory,1991,37(4):1019~1033

共引文献19

同被引文献21

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部