期刊文献+

基于有限差分法的变截面旋转梁弯曲振动 被引量:5

Analysis of Bending Vibration of Rotating Tapered Beams Based on Finite Difference Method
下载PDF
导出
摘要 根据哈密尔顿原理建立旋转梁的弯曲振动方程,运用有限差分方法对旋转梁的动力方程进行离散处理,得到旋转梁的质量和刚度矩阵。借助MATLAB振动工具箱对系统的弯曲振动进行模态分析,得到圆形、矩形和叶片类型三种变截面旋转梁的固有频率,并与相关文献进行比较。在差分离散矩阵的基础上,建立旋转梁的线性定常状态空间方程。运用MATLAB振动工具箱对旋转梁的自治系统和非自治系统进行仿真,分别求得旋转梁的时间位移曲线和相轨迹。最后对非自治系统的旋转梁进行频域分析,得到幅频特性和相频特性曲线。 The bending vibration equations of rotating tapered beams are established based on Hamilton’s principle. The equations are then discretized by using finite difference method and the mass and stiffness matrices are gotten. The natural frequencies for circular, rectangular and blade cross-section beams are obtained by using MATLAB vibration toolbox. The results of computation are analyzed and compared with those in relevant references. The linearized stationary state spaces of autonomous and non- autonomous systems are built based on the mass and stiffness matrices. Then the displacement curves and phase tracks of the rotating tapered beams are drawn with MATLAB vibration toolbox. Finally the amplitude-frequency and phase-frequency characteristic curves for the non-autonomous rotating tapered beams are plotted based on the frequency-domain analysis.
出处 《噪声与振动控制》 CSCD 2014年第3期6-10,14,共6页 Noise and Vibration Control
关键词 振动与波 变截面 旋转梁 有限差分 固有频率 状态空间 vibration and wave taper rotating beams finite difference natural frequency state space
  • 相关文献

参考文献13

  • 1Chung J, Yoo H H. Dynamic analysis of rotating cantilever beam by using the finite element method[J]. J. Sound Vib., 2002, 249: 147-164.
  • 2Bazoune A. Effect of tapering on natural frequencies of rotating beams[J]. Shoe, k Vib., 2007, 14: 169-179.
  • 3Fox C H J, Burdess J S. The natural frequencies of a thin rotating cantilever with offset root[J]. J. Sound Vib., 1979, 65: 151-158.
  • 4Yigit A, Scott R A, Ulsoy A G. Flexural motion of a rotating beam attached to a rigid body[J]. J. Smmd Vlb., 1988, 121: 201-210.
  • 5Banerjee J R. Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method[J]. I. Sound Vib., 2000, 233: 857-875.
  • 6Banerjee J R, Su H, Jackson D R. Free vibration of rotating tapered beams using the dynamic stiffness method [J]. J. Sotmd Vib., 2006, 298: 1034-1054.
  • 7Banerjee J R. Free vibration of sandwich beams usingthe dynamic stiffness method[J]. Comput Straet, 2003, 81: 1915-22.
  • 8Chert M L, Liao Y S. Vibrations of pretwisted spinning beams under axial compressive loads with elastic constraints[J]. J. Sotmd Vib., 1991, 147: 497-513.
  • 9Wright A D, Smith G E, Thresher R W, Wang JCL. Vibration modes of centrifugally stiffened beams[J]. J. Appl. Mecla, 1982, 49: 197-202.
  • 10Wang G, Wereley N M. Free vibration analysis of rotatingblades with uniform tapers[J]. AIAA J, 2004, 42:2429-2437.

二级参考文献14

  • 1王彦琴,盛美萍,孙进才.变截面梁-板耦合结构的功率流[J].振动与冲击,2005,24(2):33-36. 被引量:13
  • 2李伟,仪垂杰,胡选利,黄协清.梁板结构功率流的导纳法研究[J].西安交通大学学报,1995,29(7):29-35. 被引量:10
  • 3Friberg, P. O. , Beam element matrices derived form Vlasov's theory of open thin-walled elastic beams [ J ]. International Journal of numerical methods in engineering, 1985, 21 : 1205 - 1228.
  • 4Bishop, R. E. D. , S.M. Cannon and S. Miao, On coupled bending and torsional vibration of uniform beams [J]. Journal of sound and vibration, 1989, 131: 457 - 464.
  • 5Banerjee J. R. , S. Guo, W. P. Howson, Exact dynamic stiffness matrix of a bending-torsion coupled beam including warping [ J]. Computers and structures, 1996, 59:613-621.
  • 6Berein, A. N, M. Tanaka, coupled flexural-torsional vibrations of Timoshenko beams [ J ]. Journal of sound and vibration, 1997, 207:47-59.
  • 7Ricardo Daniel Ambrosini, Jorge Daniel Riera, Rodolfo Francisco Danesi. A modified vlasov theory for dynamic analysis of thin-walled and variable open section beams [ J ]. Engineering Structures 22 (2000) 890 - 900.
  • 8Y. Yaman, O. Ozdemir. Forced vibrations of triply coupled, periodically and elastically supported, finite, open-section channels [ J ]. Journal of Sound and Vibration, 2002,250(4), 649-673.
  • 9A. Arpaci, S.E. Bozdag, E. Sunbuloglu. Triply coupled vibrations of thin-walled open cross-section beams including rotary inertia effects [ J ]. Journal of Sound and Vibration 260 (2003) 889 - 900.
  • 10A. Prokic. On fivefold coupled vibrations of[ J]. Engineering Structures, 28 (2006) 54 - 62.

共引文献5

同被引文献41

  • 1李艳辉,杨智春,黄小光.一种分析旋转梁振动的梁柱有限元[J].机械科学与技术,2005,24(3):299-302. 被引量:1
  • 2杨晓东,陈立群.粘弹性变速运动梁稳定性的直接多尺度分析[J].振动工程学报,2005,18(2):223-226. 被引量:15
  • 3周叮.一类变截面梁横向自由振动的精确解析解[J].振动与冲击,1996,15(3):12-15. 被引量:16
  • 4吴国荣.应用微分求积法的旋转变截面梁振动分析[J].中国舰船研究,2007,2(5):42-44. 被引量:1
  • 5SHAHBA A, RAJASEKARAN S. Free vibration and stabili- ty of tapered Euler-Bernoulli beams made of axially functional- ly graded materials [J].Applied Mathematical Modeling, 2012,36(7) : 3094- 3111.
  • 6OZGUMUS O O, KAYA M O. Flapwise bending vibration a- nalysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method[J]. Journal of Sound and Vibra- tion, 2006,289(1) :413-420.
  • 7OZGUMUS O O, KAYA M O. Flapwise bending vibration a-nalysis of double tapered rotating Euler-Bernoulli beam by using the differential transform method[J]. Meceaniea, 2006, 41(6) :661-670.
  • 8RAJASEKARAN S. Differential transformation and differen- tial quadrature methods for centrifugally stiffened axially func- tionally graded tapered beams[J]. International Journal of Me- chanical Sciences, 2013,74 (3) : 15- 31.
  • 9ZARRINZADEH H, ATTARNEJAD R, SHAHBA A. Free vibration of rotating axially functionally graded tapered beams [J]. Proceedings of the Institution of Mechanical Engineers Part O Journal of Aerospace Engineering, 2011,226:363 - 379.
  • 10ATTARNEJAD R, SHAHBA A. Dynamic basic displace- ment functions in free vibration analysis of centrifugally stiff- ened tapered beams: a mechanical solution [J]. Meecanica, 2011,46(6) :1267- 1281.

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部