期刊文献+

一类分数阶微分方程边值问题正解的存在性

Existence of Positive Solutions for Boundary Value Problems with Fraction Differential Equation
下载PDF
导出
摘要 研究了一类分数阶微分方程的边值问题:{Dα0+u(t)+f(u(t))=0,u(0)=0,u(1)=0,其中α(1<α<2)是实数,Dα0+是标准的Riemann-Liouville微分,f:[0,+∞)→[0,+∞)连续,t∈[0,1].利用范数形式的锥拉伸与锥压缩不动点定理,在满足适当的条件下,证明了该边值问题正解的存在性. A class of fractional differential equation boundary value problem is studied. {D°0+u(t)+f(u(t))=0,u(0)=0,u(1)=0where a ( 1 ( a ( 2 ) is a real number, and D°0+ is the standard Riemann-Liouville differentiation,t∈[0.1] t E E0,1-], and f:[O,+00)→[0,+00) is continuous. By using fixed-point theorem of cone expansion and compression of norm type, the existence of positive solutions for fraction differential equation boundary value problems is proved.
作者 邹序焱 谢润
出处 《宁夏大学学报(自然科学版)》 CAS 2014年第2期113-116,共4页 Journal of Ningxia University(Natural Science Edition)
基金 国家自然科学基金资助项目(61370203) 四川省教育厅青年基金资助项目(08ZB002) 宜宾学院科研基金资助项目(2011Q25)
关键词 分数阶微分方程 边值问题 锥拉伸与锥压缩不动点定理 fraction differential equation boundary value problems cone expansion and compression fixedpoint theorem
  • 相关文献

参考文献8

二级参考文献71

  • 1ZHANG Shuqin.Monotone method for initial value problem for fractional diffusion equation[J].Science China Mathematics,2006,49(9):1223-1230. 被引量:7
  • 2LiHongyu,SunJingxian.POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEM FOR A SYSTEM OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS[J].Annals of Differential Equations,2005,21(2):153-160. 被引量:19
  • 3Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations.North-Holland Mathematics Studies,204.Amsterdam:Elsevier Science B V,2006.
  • 4Oldham K B,Spanier J.The Fractional Calculus.New York,London:Academic Press,1974.
  • 5Ross B(ED.).The Fractional Calculus and its Applications.Lecture Notes in Mathematics 475.Berlin:Springer-Verlag,1975.
  • 6Nonnenmacher T F,Metzler R.On the Riemann-Liouvile fractional calculus and some recent applications.Fractals,1995,3:557-566.
  • 7Tatom F B.The relationship between fractional calculus and fractals.Fractals,1995,3:217-229.
  • 8Podlubny I.Fractional differential equations.Mathematics in Science and Engineering,vol 198.New York,London,Toronto:Academic Press,1999.
  • 9Samko S G,Kilbas A A,Marichev O I.Fractional Integral and Derivatives (Theorey and Applications).Switzerland:Gordon and Breach,1993.
  • 10Babakhani A,Gejji V D.Existence of positive solutions of nonlinear fractional differential equations.JMath Anal Appl,2003,278:434-442.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部