摘要
研究了一类分数阶微分方程的边值问题:{Dα0+u(t)+f(u(t))=0,u(0)=0,u(1)=0,其中α(1<α<2)是实数,Dα0+是标准的Riemann-Liouville微分,f:[0,+∞)→[0,+∞)连续,t∈[0,1].利用范数形式的锥拉伸与锥压缩不动点定理,在满足适当的条件下,证明了该边值问题正解的存在性.
A class of fractional differential equation boundary value problem is studied. {D°0+u(t)+f(u(t))=0,u(0)=0,u(1)=0where a ( 1 ( a ( 2 ) is a real number, and D°0+ is the standard Riemann-Liouville differentiation,t∈[0.1] t E E0,1-], and f:[O,+00)→[0,+00) is continuous. By using fixed-point theorem of cone expansion and compression of norm type, the existence of positive solutions for fraction differential equation boundary value problems is proved.
出处
《宁夏大学学报(自然科学版)》
CAS
2014年第2期113-116,共4页
Journal of Ningxia University(Natural Science Edition)
基金
国家自然科学基金资助项目(61370203)
四川省教育厅青年基金资助项目(08ZB002)
宜宾学院科研基金资助项目(2011Q25)
关键词
分数阶微分方程
边值问题
锥拉伸与锥压缩不动点定理
fraction differential equation
boundary value problems
cone expansion and compression fixedpoint theorem