期刊文献+

模拟退火算法与支持向量机在机械故障诊断中的应用 被引量:4

The Application on the Simulated Annealing Algorithm and the Support Vector Machines in Mechanical Fault Diagnosis
下载PDF
导出
摘要 为提高支持向量机在机械故障诊断测试中的分类正确率,将模拟退火算法与支持向量机相结合,用模拟退火算法优化支持向量机核函数及其参数,再将故障特征输入支持向量机进行故障识别.诊断实例表明,该方法与传统支持向量机方法相比能得到较高的诊断精度. To improve the classification accuracy of the support vector machine (SVM) in mechanical fault diagnosis, the simulated annealing algorithm and the support vector machine (SVM) is combined. First, the kernel parameters for SVM are optimized by using the simulated annealing algorithm. Then the fault feature is inputted into the support vector machines with the best kernel parameters for fault identification. The experimental result shows that the method, compared with the traditional support vector machine, can obtain higher diagnosis accuracy with fewer features.
作者 纪华 马伏龙
出处 《宁夏大学学报(自然科学版)》 CAS 2014年第2期141-143,共3页 Journal of Ningxia University(Natural Science Edition)
基金 宁夏大学科学研究基金资助项目((E)ndzr09-33) 宁夏自然科学基金资助项目(NZ0919)
关键词 支持向量机 模拟退火算法 故障诊断 参数优化 support vector machine simulated annealing algorithms fault diagnosis parameter optimization
  • 相关文献

参考文献10

  • 1边肇祺.模式识别[M].北京:清华大学出版社,1987..
  • 2VAPNIK V N. The natural of statistical learning theo- ry[M]. New York: Springer-Verlag, 1995.
  • 3HERMES L, BUHMANN J M. Feature selection for support vector machines[C]//Proceeding of 15th In- ternational Conference on Pattern Recognition, Barce- lona:[s. n. ] ,2000:712-715.
  • 4张周锁,李凌均,何正嘉.基于支持向量机的机械故障诊断方法研究[J].西安交通大学学报,2002,36(12):1303-1306. 被引量:86
  • 5YANGBo-Suk, HAN Tian, HWANG Won-woo. Fault diagnosis of rotating machinery based on multi-class support vector machines [J]. Journal of Mechanical Science and Technology, 2005,19 (3): 846-859.
  • 6吴峰崎,孟光.基于支持向量机的转子振动信号故障分类研究[J].振动工程学报,2006,19(2):238-241. 被引量:19
  • 7HSU Chih-Wei, LIN Chih-Jen. A comparison of methods for multi-class support vector machines[J]. IEEE Transactions on Neural Networks, 2002,13 ( 3 ) : 415-425.
  • 8康立山,谢云,罗祖华,等.非数值并行算法--模拟退火算法:第一册[M].北京:科学出版社,1997.
  • 9邢文训 谢金星.现代优化计算方法[M].北京:清华大学出版社,2003..
  • 10崔玉敏.基于振动信号非线性方法的轴承故障诊断研究[D].镇江:江苏大学,2010.

二级参考文献14

  • 1何正嘉 訾艳阳 等.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社,2000,1..
  • 2Vapnik V. The Nature of Statistical Learning Theory[M]. Springer-Verlag, New York. 1995.
  • 3Cortes C, Vapnik V. Support vector networks [J].Machine Learning, 1995,20 : 273-297.
  • 4Poyhonen S, Negrea M, Arkkio A, et al. Fault diagnostics of an electrical machine with multiple support vector classifiers[A]. Intelligent Control. Proc. 2002 IEEE International Symposium[C]. 373-378.
  • 5Scholkopf B, Sung K K, Burge C, et al. Comparing support vector machines with Gaussian kernels to radial basis function classifiers[J]. IEEE Trans. Signal Processing, 1997,45(11):2 758-2 765.
  • 6Samanta B. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms[J]. Mechanical system and signal processing, 2004,18(3)1625-644.
  • 7Jack L B, Nandi A K. Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms[J]. Mechanical systems and signal processing, 2002,16 (2) : 373-390.
  • 8Chih-Wei Hsu, Chih-Jen Lin. A comparison of methods for multi-class support vector machines[J]. Neural Networks, IEEE Transactions on, 2002,13(2):415-425.
  • 9冯辅周,褚福磊,丁汉哲.KL-Bayes方法在故障模式识别中的应用[J].振动工程学报,1999,12(4):499-500. 被引量:4
  • 10马云潜,张学工.支持向量机函数拟合在分形插值中的应用[J].清华大学学报(自然科学版),2000,40(3):76-78. 被引量:32

共引文献153

同被引文献45

  • 1牟衔臣,谢东来,闫威,聂晶,李想.基于遗传算法航路规划TSP问题的研究[J].系统仿真学报,2013,25(S1):86-89. 被引量:11
  • 2程军圣,于德介,杨宇.基于内禀模态奇异值分解和支持向量机的故障诊断方法[J].自动化学报,2006,32(3):475-480. 被引量:35
  • 3Garey MR, Johnson DS. Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: Freeman W H. 1979.
  • 4Lawer E, Lenstra J, Kan AK, Shmoys D. The Traveling Salesman Problem. New York: Wiley International Publication, 1985.
  • 5Dantzing GB, Ramser RH. The truck dispatching problem. Management Science, 1959, 25 (6): 37-39.
  • 6余详宜,崔国华,邹海明.计算机算法基础.第2版.武汉:华中科技大学,1998.
  • 7Kirkpatrick S, Gerlatt CD, Vecchi ME Optimization by simulated annealing. Science, 1983, 220 (4598): 671-680.
  • 8Metroplois N, Rosenbluth AW, Rosenbultn MN, Teller AH. Equation of state calculations by fast computing machines. Journal of Chemical Physica, 1953, 21(6):1087-1092.
  • 9in W, Qian CJ. Adaptive control of nonlinearly parameterized systems: a nonsmooth feedback framework. IEEE Trans. on Automatic Control, 2002,47(5): 757-774.
  • 10yah EE A universal adaptive stabilizer for a class of nonlinear systems. Systems and Control Letters, 1991, 16 (3): 209- 218.

引证文献4

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部