期刊文献+

非线性分数阶Dirichlet型边值正解的存在唯一性

Existence-uniqueness of Positive Solutions for Nonlinear Fractional Dirichlet-type Boundary Values
下载PDF
导出
摘要 研究了一类非线性分数阶Dirichlet型边值问题。使用广义的凸算子的不动点定理与Green函数的性质和在一定的条件下,得到此边值问题正解的存在唯一性,并能构造一迭代序列去逼近此解。正解的存在性结论得到完善和推广。 This work is concerned with a class of the nonlinear fractional Dirichlet-type boundary value problem. By using the fixed point theorems of generalized convex operators and the properties of the Green function,the existence-uniqueness of positive solutions of this boundary value problem is obtained under certain conditions,and an iterative scheme is constructed to approximate this solution. The existence theory of positive solution is completed and generalized.
作者 古传运
出处 《四川理工学院学报(自然科学版)》 CAS 2014年第3期94-97,共4页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 四川省教育厅项目(14ZB0309)
关键词 边值问题 广义的凸算子 不动点 正解 存在唯一性 boundary value problem generalized convex operators fixed point positive solution existence and uniqueness
  • 相关文献

参考文献16

  • 1Oldham K B,Spanier J.The Fractional Calculus[M].New York:Academic Press,1974.
  • 2Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equation[M].New York:John Wiley,1993.
  • 3Meral F C,Royston T J,Magin R.Fractional calculus in viscoelasticity:An experimental study[J]. Commun Non- linear Sci Numer Simul,2010,15 (4):939-45.
  • 4Lin Yezhi,LiuYinping,Li Zlaibin.Symbolic computation of analytic approximate solutions for nonlinear fractional differential equations[J].Computer Physics Communica- tions,2013,184(1):130-141.
  • 5John T. Katsikadelis Numerical solution of distributed order fractional differential equations[J].Joumal of Computational Physics,2014,259:l 1-22.
  • 6Zhang S.Existence of positive solutions for some class of nonlinear fractional equation[J].J Math Anal Appl, 2003,278:136-48.
  • 7AI M M,Syam M I,Anwar M N.A collocation-shooting method for solving fractional boundary value problems [J].Commun Nonlinear Sci Numer Simul,2010,15(12): 3814-22.
  • 8Kilbas A A, Srivastava H H, Trujillo J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam:Elsevier Science B.V.,2006.
  • 9Bai Z, Lti H.Positive solutions for boundary value prob- lem of nonlinear fractional differential equation[J]. J Appl Math,2005,311:495-505.
  • 10Chai Guoqing. Existence results of positive solutions for boundary value problems of fractional differentialequations [ J]. Bound Value Probl:2013 (4):109.

二级参考文献14

  • 1李福义,梁展东.凹(凸)算子的不动点定理及其应用[J].系统科学与数学,1994,14(4):355-360. 被引量:48
  • 2Krasnoselskii M. A., Positive solutions of operator equations, Noordoff (Groningen), 1964.
  • 3Potter A. J. B., Applications of Hilbert's projective metric to certain classes of non-Homogeneous operators, Quart. J. Math. Oxford, 1977, 28(2): 93-99.
  • 4Bushell P. J., Hilberts metric and positive contraction mappings, Arch. Rational Mech. Anal., 1973, 52(4): 330-338.
  • 5Wan W. X., Conditions for contraction of mappings and Banach type fixed point theoorem, Acta Mathematica Sinica, Chinese Series, 1984, 27: 35-52.
  • 6Guo D. J., Fixed points and eigenelements of a class of concavex and convex operator, Chinese Sci. Bull., 1985, 15:1132-1135 .
  • 7Liang Z. D., Wang W. X., Li S. J., On concave operators, Acta Mathematica Sinica, English Series, 2006, 22(2): 577- 582.
  • 8Liang Z. D., Zhang L. L., Li S. J., Fixed point theorems for a class of mixed monotone operators, Z. Anal. Anwendungen, 2003, 22(3): 529-542.
  • 9Zhai C. B., Guo C. M., on α-convex operators, J. Math. Anal. Appl., 2006, 316: 556-565.
  • 10Guo D. J., Nonlinear functional analysis, Jinan: Shandong Science and Technology Press, 1985 .

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部