期刊文献+

考虑相位加权的邻点滤波虚拟成像处理技术 被引量:1

Technology of Virtual Imaging Process with Phase Points Weighting of Neighbors
下载PDF
导出
摘要 虚拟成像处理技术的难点在于成像处理时,由于整幅图像上多个相位点信息不能够有效关联,提高图像质量,所以成像结果很差。提出考虑相位加权的邻点滤波虚拟成像处理技术,在虚拟成像处理时,将近邻像点的相位信息作为成像处理中的对象,采用相位加权的方法,将相邻像点的相位进行深度加权,大大提高图像的质量。采用实际的虚拟成像进行测试实验,结果显示,采用基于考虑相位加权邻点滤波的虚拟成像处理技术,图像处理的效果很好,相位噪声均值和方差均很小,具有很好的成像应用价值。 The virtual imaging processing difficulty lied in the whole image information can not be effectively connected on a plurality of phase point, and the image quality can not be improved, so the imaging result was poor. The virtual imaging process technology with phase points weighting of neighbors was proposed, the phase information of neighboring pixels as an imaging element in the process was collected, with a phase reconstruction method, the phase of the adjacent pixel depth reorganization was greatly improved. The realistic virtual imaging was used to do test experiment, the result shows that with the phase points weighting of neighbors method, the image processing works well, the mean and variance of the phase noise are very small, so it has very good imaging application value for use.
作者 丁玲
出处 《科技通报》 北大核心 2014年第6期46-48,54,共4页 Bulletin of Science and Technology
基金 沧州市教育科学研究"十二五"规划课题(201206006)
关键词 相位加权 邻点 虚拟成像 phase weighting neighbors virtual imaging
  • 相关文献

参考文献5

二级参考文献16

  • 1宋锦萍,职占江.图像分割方法研究[J].现代电子技术,2006,29(6):59-61. 被引量:10
  • 2[1]Himmelblau, D.M. Applied Nonlinear Programming. New York: McGraw-Hill, Inc., 1972.
  • 3[2]Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning. Readings, MA: Addison-Wesley Publishing Company, 1989.
  • 4[3]Michalewicz, Z., Schoenauer, M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation Journal, 1996,4(1):1~32.
  • 5[4]Powell, D., Skolnick, M. Using genetic algorithms in engineering design optimization with nonlinear constraints. In: Forest, S., ed. Proceedings of the 5th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1993. 424~430.
  • 6[5]Deb, K., Agrawal, S. A niched-penalty approach for constraint handling in genetic algorithms. In: Montana, D., ed. Proceedings of the ICANNGA-99. Portoroz, Slovenia, 1999. 234~239.
  • 7[6]Schoenauer, M., Michalewicz, Z. Boundary operators for constrained optimization problems. In: Baeck, T., ed. Proceedings of the 7th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1997. 322~329.
  • 8[7]Michalewicz, Z., Nazhiyath, G., Michalewicz, M. A note on usefulness of geometrical crossover for numerical optimization problems. In: Angeline, P., Baeck, T., eds. Proceedings of the 5th Annual Conference on Evolutionary Programming. Cambridge, MA: MIT Press, 1996. 325~331.
  • 9[8]Michalewicz, Z. Genetic Algorithms+Data Structures=Evolution Programs. 3rd ed., New York: Springer\|Verlag, 1996.
  • 10Linde Y,Buzo A,Gray R.An algorithm for vector quantizer design.IEEE Trans on Comm,1980;28(1):84-95.

共引文献128

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部