期刊文献+

基于逻辑自映射的变尺度Henon搜索蜂群算法 被引量:3

Artificial Bee Colony Algorithm Based on Logic Self Mapping and Henon Search with Variable Scale
下载PDF
导出
摘要 鉴于Henon映射的自组织特性,提出基于Henon映射变尺度搜索的蜂群优化算法,通过Henon映射的逻辑自组织映射能力,在蜂群寻优搜索到的引领蜂群扰动附近的自组织变尺度搜索更优特征解,同时对这搜索范围进行变尺度动态调整收缩。最后将蜂群仿生优化算法应用到强干扰瑞利分布色噪声下微弱信号检测仿真实验和应用中,仿真实验表明,改进的蜂群优化算法显著提高了优化性能,寻优检测精度更高,并能实现全局快速收敛,能有效对强干扰下的微弱信号进行有效检测,检测性能提高显著。 In view of the self-organization characteristics of Henon mapping, the bee colony optimization algorithm was pro-posed based on Henon mapping and its variable scale search. And the logic self organizing mapping ability was used, and the most feature solution was searched with variable scale for bee colony disturbance performance. The searching range was adjusted with dynamic adjustment contraction. Finally, it was applied in the weak signal detection in the strong disturbance with Rayleigh distribution of color noise. Simulation result shows that the improved algorithm can optimize the detection performance greatly, and the searching precision is improved perfectly with fast convergence, the detection performance is improved greatly, and it can be applied in the weak signal detection in practice.
出处 《科技通报》 北大核心 2014年第6期197-199,共3页 Bulletin of Science and Technology
基金 国家自然科学基金(61003066 61370102) 广东省自然科学基金项目(S2011040002890 S2012010010613)
关键词 自组织映射 蜂群 HENON映射 优化算法 self-organization mapping artificial bee colony henon mapping optimization algorithm
  • 相关文献

参考文献5

二级参考文献20

  • 1吴春明,陈治,姜明.蚁群算法中系统初始化及系统参数的研究[J].电子学报,2006,34(8):1530-1533. 被引量:47
  • 2马溪骏,潘若愚,杨善林.基于信息素递减的蚁群算法[J].系统仿真学报,2006,18(11):3297-3300. 被引量:18
  • 3Basturk B, Karaboga D. An artificial bee colony (ABC) algorithm for numeric function optimization[C]//Proceedings of IEEE Swarm Intelligence Symposium Indianapolis. Indianapdis, USA" [s. n. ], 2006:651 - 656.
  • 4Fathian M, Amiri B, Maroosi A. Application of honey bee mating optimization algorithm on clustering[J]. Applied Mathematics and Computation, 2007 (10) : 1016 - 1025.
  • 5Von Frisch K. The dance language and orientation of bees[M]. Boston, Massachusetts, USA.. The Belknap Press of Harvard University Press, 1967.
  • 6Abbass H A. Arriage in honey-bee optimization (MBO) : a haplometrosis polygynous swarming approach [C]//Proceedings of The Congress on Evolutionary Computation (CEC2001). Seoul, Korea: [s. n. ], 2001:207 - 214.
  • 7Gutin G, Punnen A. The traveling salesman problem and its variations[M]. Dordrecht, Holland: Kluwer Academic Publishers, 2002.
  • 8Afshar A, Bozog H O, Marino M A. Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation [J]. Journal of the Franklin Institute, 2007,344: 452 - 462.
  • 9Haddad O B, Afshar A, Marino M A. Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization[J]. Water Resources Management, 2006,20 : 661 - 680.
  • 10Seeley T D. The wisdom of the hive: the social physiology of honey bee colonies[M]. Boston, Massachusetts, USA: Harvard University Press, 1995.

共引文献163

同被引文献15

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部