期刊文献+

基展开模型下的时变信道半盲均衡算法

Semi-blind Equalizer Estimation for Time-Varying Channels Based on Basis Expansion Model
下载PDF
导出
摘要 提出了一种针对时变信道的全新半盲均衡算法。时变信道由经典的复指数基展开模型描述,相应地,算法基于该模型专用的时变线性均衡器设计。盲均衡算法由联合独立分量分析和软判决引导的代价函数构建,并采用牛顿迭代的方式工作,以更好消除码间干扰。除此之外,复指数基展开模型的特殊结构经充分利用大大简化了牛顿迭代计算。有限的训练符号用于初始化均衡器系数和判断迭代是否继续。与现有的时变信道处理算法相比,本文算法较好地兼顾了均衡效果和信道利用率,具有均衡效果好,抗噪声能力强等优点。仿真验证了算法的有效性。 A novel semi-blind equalization method is presented for time-varying channel. The complex exponential basis expansion model is introduced to describe the time-varying channel taps. Therefore, the method is designed based on the linear time-varying equalizer. The new method adopts the Newton iterative based equalization algorithm which combines the independent component analysis criterion with soft-decision directed criterion to remove the inter-symbol interference. Furthermore, the method reduces the iterative computation burden by using the complex exponential basis expansion model structure. A small number of training symbols are utilized to provide a rough initial estimate of the equalizer/s weight vector and decide if the iteration should go on. Compared with the existing ones, the proposed algorithm considers both channel spectral efficiency and equalization processing, leading to a better equalization and more robust anti-noise ability. Simulation results prove its efficiency.
作者 王成 杨宾
出处 《数据采集与处理》 CSCD 北大核心 2014年第3期478-482,共5页 Journal of Data Acquisition and Processing
关键词 半盲均衡 基展开模型 牛顿迭代 软判决引导 semi-blind equalization basis expansion model Newton iteration soft-decision directed
  • 相关文献

参考文献12

  • 1Giannakis G B,Tepedelenlioglu C.Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels[J].Proc.IEEE,1998,86(10):1969-1986.
  • 2Qu F,Yang L.Basis expansion model for underwater acoustic channels[C]//Proc of MTS/IEEE Oceans Conf.Quebec City:IEEE,2008:1-7.
  • 3Hrycak T,Das S,Matz G.Practical estimation of rapidly varying channels for OFDM systems[J].IEEE Trans Wireless Commun,2011,59 (11):3040-3048.
  • 4Ma X,Giannakis G B,Ohno S.Optimal training for block transmissions over doubly-selective fading channels[J].IEEE Trans Signal Processing,2003,51(5):1351-1366.
  • 5Barhumi I,Leus G,Moonen M.Time-varying FIR equalization for doubly selective channels[J].IEEE Trans Wireless Commun,2005,4(1):202-214.
  • 6Hrycak T,Das S,Matz G.Low complexity equalization for doubly selective channels modeled by a basis expansion[J].IEEE Trans Signal Processing,2010,58(11):5706-5719.
  • 7Bai E,Ding Z.Blind decision feedback equalization of time-varying channels with DPSK inputs[J].IEEE Trans Signal Processing,2001,49(7):1533-1542.
  • 8Peng D,Xiang Y,Trinh H.Adaptive blind equalization of time-varying SIMO systems driven by QPSK input[J].Digital Signal Process,2012,7:14.
  • 9Tang Z,Leus G.RLS direct equalizer estimation with assistance of pilots for transmission over time-varying channels[C]// Proc of Signal Processing Conf Antalya.Turkey:[s.n.],2005:322-325.
  • 10Ding Z,Rantnarajah T,Cowan C,et al.HOS-based semi-blind spatial equalization for MIMO Rayleigh fading channels[J].IEEE Trans Signal Processing,2008,56(1):248-255.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部