期刊文献+

基于特征聚类集成技术的组特征选择方法 被引量:2

Group feature selection based on feature clustering ensemble
下载PDF
导出
摘要 提出了一种过滤冗余特征的算法框架,利用组特征选择算法去除冗余特征。在组构造阶段为了弥补单一聚类算法的不足,引入聚类集成的思想,先利用k-means方法通过多次聚类得到一个聚类集体,在集成阶段再利用层次聚类算法对聚类集体进行集成得到最终的结果。实验结果表明,这种算法框架能有效消除冗余特征,在保证算法稳定性的同时还能获得很好的性能。 The paper presents a filtering algorithm framework of the redundant features, which first take advantage of group feature selection algorithm to remove the redundant features. In order to make up the lack of a single clustering algorithm in the group formation, it puts forward the idea of clustering ensemble. First, it uses k-means clustering method to get multiple clustering. Then use hierarchical clu..;tering algorithm to integrate and obtain the final results Experimental results show that the algorithm framework can eliminate the redundant features effectively, at the same time ensure the stability without sacrificing the classification accuracy.
作者 黄莎莎
出处 《微型机与应用》 2014年第11期79-82,共4页 Microcomputer & Its Applications
关键词 稳定性 组特征选择 聚类集成 层次聚类 stability group feature selection clustering ensemble hierarchical clustering
  • 相关文献

参考文献19

  • 1DASH M,LIU H.Feature selection for classification[J].Intelligent data analysis,1997,1(1-4):131-156.
  • 2KOHAVI R,JOHN G H.Wrappers for feature subset selection[J].Artificial intelligence,1997,97(1):273-324.
  • 3K P,K J,H V.Improving stability of feature selection methods[C].Proceedings of the 12th International Conference on Computer Analysis of Images and Patterns,2007:929-936.
  • 4KALOUSIS A,PRADOS J,HILARIO M.Stability of feature selection algorithms:a study on high-dimensional spaces[J].Knowledge and Information Systems,2007(12):95-116.
  • 5YU L,DING C,LOSCALZO S.Stable feature selection via dense feature groups[J].Proceedings of the 14th ACM International Conference on Knowledge Discovery and Data Mining,2008:803-811.
  • 6AWADA W,KHOSHGOFTAAR T M,DITTMAN D.et al.A review of the stability of feature selection techniques for bioinformatics data[C].2012 IEEE 13th International Conference on,Information Reuse and Integration,IEEE,2012:356-363.
  • 7LOSCALZO S,YU L,DING C.Consensus group stable feature selection[C].Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining,2009:567-576.
  • 8AU W H,CHAN K C C,WONG A K C,et al.Attribute clustering for grouping,selection,and classification of gene expression data[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics(TCBB),2005,2(2):83-101.
  • 9GUO Z,ZHANG T,LI X,et al.Towards precise classification of cancers based on robust gene functional expression profiles[J].BMC Bioinformatics,2005,6(1):58.
  • 10RAPAPORT F,ZINOVYEV A,DUTREIX M,et al.Classification of microarray data using gene networks[J].BMC Bioinformatics,2007,8(1):35.

同被引文献14

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部