期刊文献+

基于AFOPT-tree的最大频繁项集挖掘

Mining of maximal frequent item sets based on AFOPT-tree
下载PDF
导出
摘要 在最大频繁项集的挖掘过程中,尤其在数据规模庞大并且最小支持度较小的情况下,超集检测成为算法运行的主要时间消耗,提出最大频繁项集算法A-MFI,其通过优化基于投影的超集检测机制有效地减少了超集检测的时间。另外,将事务数据库数据映射至一种压缩的AFOPT-tree结构,该结构结合自顶向下的遍历策略,具有更小的时间开销。 During the process of mining maximal frequent item sets, when the data size is large and minimum support is little, superset checking is the main time-consuming in the mining algorithm. In this paper, a new algorithm A-MFI is proposed, by improving the superset checking method based on projection of the maximal frequent item sets, it efficiently reduces the cost of superset checking. In addition, the databases are projected onto a compact structure called AFOPT-tree which costs few time in a topdown traversal strategy.
出处 《微型机与应用》 2014年第11期86-88,共3页 Microcomputer & Its Applications
关键词 最大频繁项集 关联规则 超集检测 最大频繁项集投影 maximal frequent item set association rules superset check maximal frequent item sets projection
  • 相关文献

参考文献12

  • 1AGRAWAL R,IMIEUNSKI T,SWAMI A.Mining association rules between sets of items in large databases[C].Proceedings of ACM SIGMOD International Conference on Management of Data,1993:207-216.
  • 2BAYARDO R.Efficiently mining long patterns from databases[C].Proceeding of 1998 ACM SI GMOD International Conference on Management of Data,New York:ACM Press,1998:85-93.
  • 3AGRAWAL R,SRIKANT R.Fast algorithms for mining association,rules[C].Proceedings of the 20th International Conference on Very Large Database,1994:478-499.
  • 4GOUDA K,ZAKI M J.Efficiently mining maximal frequent item sets[C].Proceedings of the IEEE International Conference on Data Mining,2001:163-170.
  • 5ZHOU QH,WESLEY C,LU BJ.SmartMiner.A depth 1st algorithm guided by tail information for mining maximal frequent item sets[C].Proceedings of the IEEE International Conference on Data Mining,2002:570-577.
  • 6GRAHNE G,ZHU J E.High performance mining of maximal frequent item sets[C].Proceedings of the 6th SIAM International Workshop on High Performance Data Mining,2003:135-143.
  • 7GRAHNE G,ZHU J F.High performance mining of maximal frequent item sets[C].Proceedings of the 6th SIAM Int'I Workshop on High Performance Data Mining,2003:135-143.
  • 8颜跃进,李舟军,陈火旺.基于FP-Tree有效挖掘最大频繁项集[J].软件学报,2005,16(2):215-222. 被引量:68
  • 9Liu Guimei,Lu Hongjun,Xu Yabo.Ascending frequency ordered prefix-tree efficient mining of frequent patterns[C].Proceedings of the 8th International Conference on Database Systems for Advanced Applications,Kyoto,Japan,2003:65-72.
  • 10毛宇星,陈彤兵,施伯乐.一种高效的多层和概化关联规则挖掘方法[J].软件学报,2011,22(12):2965-2980. 被引量:37

二级参考文献44

  • 1颜跃进,李舟军,陈火旺.基于FP-Tree有效挖掘最大频繁项集[J].软件学报,2005,16(2):215-222. 被引量:68
  • 2http://archive.ics.uci.edu/ml/datasets.html
  • 3Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proc. of the Int'l Conf. on Very Large Data Bases (VLDB). Santiago, 1994. 487-499.
  • 4Zaki MJ. Scalable algorithms for association mining. IEEE Trans. on Knowledge and Data Engineering (TKDE), 2000.12(3): 372-373. [doi: 10.1109/69.846291].
  • 5Han J, Pei J, Yin YW. Mining frequent patterns without candidate generation. In: Proe. of the ACM Annual Conf. on Management of Data (SIGMOD). 2000. 1-12. [doi: 10.1145/342009.335372].
  • 6Liu GM, Lu HJ, Lou WW, Xu YB, Yu JX. Efficient mining of frequent patterns using ascending frequency ordered prefix-tree. Data Mining and Knowledge Discovery (DMKD), 2004,9(3):249-274. [doi: 10.1023/B:DAMI.0000041128.59011.53].
  • 7Han JW, Fu YQ. Discovery of multiple-level association rules from large databases. In: Proc. of the Int'l Conf. on Very Large Data Bases (VLDB). 1995.420-431.
  • 8Srikant R, Agrawal R. Mining generalized association rules. In: Proc. of the Int'l Conf. on Very Large Data Bases (VLDB). 1995. 407-419.
  • 9Hipp J, Myka A, Wirth R, Guntzer U. A new algorithm for faster mining of generalized association rules. In: Proc. of the European Syrup. on Principles of Data Mining and Knowledge Discovery (PKDD). 1998.74-82. [doi: 10.1007/BFb0094807].
  • 10Sriphaew K, Theeramunkong T. Fast algorithm for mining generalized frequent patterns of generalized association rules. IEICE Trans. on Information and Systems (TOIS), 2004,E87-D(3):761-770.

共引文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部