期刊文献+

案事件时空联机分析处理与可视化 被引量:1

Spatio-temporal online analytical processing and visualization of case
下载PDF
导出
摘要 空间联机分析处理技术将GIS与联机分析处理技术OLAP相结合,提供在空间维度上进行不同尺度钻取的解决方案——SOLAP。在SOLAP的基础上,进一步考虑时间维度,设计了雪花模式的案事件时空数据立方体,通过对目标数据的切片、旋转、钻取等操作,分别基于案发地空间维度、案发时间维度和时空多个维度进行分析,探索案事件在时空上的分布规律,并结合二维颜色矩阵图、二维等值区域图、雷达图等图表对分析结果进行可视化展示,为公安机关犯罪预防、警力配置等决策提供技术支持。 Spatio-temporal online analytical processing (SOLAP) is a technology combining geographic information system(GIS) and online analytical processing technology (OLAP). It provides a solution to support automated drill operations between the spatial levels of a spatial dimension. Based on SOLAP, the spatio-temporal data cube snowflake model of case is designed with further consideration of time dimension. Through target data operations of slice, drill, rotation, explore the temporal and spatial distribution of case, based on the analysis of space dimension, the time dimension, and the muhiple spatio-temporal dimensions. At last the analysis result is presented by two-dimensional color matrix chart, two-dimensional choroplethic map and radar diagram to provide technical support for crime prevention and police force allocation decision.
作者 杨婷 吴升
出处 《微型机与应用》 2014年第11期89-91,共3页 Microcomputer & Its Applications
基金 国家863重大项目课题(2012AA12A208)
关键词 OLAP 数据立方体 数据仓库 案事件时空分析 OLAP data cube data warehouse spatio-temporal analysis of case
  • 相关文献

参考文献9

二级参考文献103

共引文献167

同被引文献20

  • 1陈为,张嵩,鲁爱东.数据可视化的基本原理与方法[M].北京:科学出版社,2013.
  • 2FU T C. A review on time series data mining[J]. Engineer- ing Applications of Artificial Intelligence, 2011,24 ( 1 ) : 164- 181.
  • 3GOUTHAMI ries data[D]. C. Temporal treemaps for visualizing time se- University of Maryland, 2004.
  • 4VAN W, VAN S. Cluster and calendar based visualization of time series data[C]. IEEE Symposium on Information Vi- sualization, San Francisco, 1999 : 24-29.
  • 5CARLIS J V, KONSTAN J A. Interactive visualization of serial periodic data[C], llth Anual Symposium on User In- terface Software and Technology, 1998:29-38.
  • 6SIRIPATANA A, JAROENSUTASINEE K, PRUEKSAA- ROOM S, et al. The development of interactive 3D spring visualization for periodic multidimensional direction time- series data sets[C]. 9th International Conference on Electri- cal Engineering, 2012:1-4.
  • 7CHENG S H, JIANG Z F, Q1 Q, et al. The polar parallel coordinates method for time-series data visualization [C]. 2012 International Conference on Systems and Informatics, 2012 : 11-14,161.
  • 8AIGNER W, MIKSCH S, SCHUMANN H, et al. Visual- ization of time-oriented data [M]. London :Human-Computer Interaction Series, 2011.
  • 9PLEIL J D, STIEGEL M A, MADDEN M C, et al. Heat map visualization of complex environmental and biomarker measurements[J]. Chemosphere, 2011, 84:716-723.
  • 10TOMINSKI C,SCHUMANN H. Enhanced interactive spiral display [C]. Proceedings of the Annual SIGRAD Confer- ence, 2008:53-56.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部