摘要
谱系与分布函数的定义很相似,那么它是否具有分布函数的某些性质呢?答案是肯定的。文章主要的结果为:1.证明了对Hilbert空间中的任意一点,谱系在强收敛意义下的间断点最多可数;2.以谱系为工具证明可分的Hilbert空间中的有界自伴算子的点谱最多可数;3.用较简洁的方法证明了有界自伴算子的特征值与其谱系的关系;4.不使用Riesz-Schauder理论,以谱系为工具证明了紧自伴算子的特征值要么是有限个,要么是以0为唯一聚点的可数个,且证明过程简单;5.不使用Riesz-Schauder理论,以谱系为工具证明了紧自伴算子可以用投影算子依算子范数逼近,且证明过程简单。
Definition of spectral family and distribution functions are very similar, and they have some similar properties. The main results of this paper are in the following areas: First, there is an at most countable discontinuity point in spectral family of Hilbert space at strong convergence; Second, using spectral family to prove bound self-adjoint operators’ point spectrum is at most a countable set in separable Hilbert space; Third, simple proof of relationship about bound self-adjoint operators eigenvalue and their spectral family is given;Fourth;by using a different way from Riesz-Schauder theory,it proves distribution of compact self-adjoint operators eigenvalues; Fifth, spectral family also be applied to prove compact self-adjoint operators that can be approximated by projection operators in the sense of operator norm.
出处
《乐山师范学院学报》
2014年第5期14-16,27,共4页
Journal of Leshan Normal University
关键词
谱系
有界自伴算子
特征值
紧自伴算子
Spectral Family
Bound Self-Adjoint Operators
Eigenvalue
Compact Self-Adjoint Operators