期刊文献+

基于粒子群优化的观测站部署算法 被引量:5

Management of Multi-sensor Based on Particle Swarm Optimization
下载PDF
导出
摘要 针对红外观测站部署问题,在研究观测站位置对定位精度影响的基础上,提出了基于粒子群优化的观测站部署算法。首先对ECEF坐标系下的CRLB矩阵进行推导;然后将观测站优化部署问题抽象为非线性规划模型,并将红外传感器联合定位的CRLB作为目标函数;最后采用粒子群优化算法求解该模型,避免了传统的非线性规划算法需要求解目标函数梯度的难题。结果表明,该部署算法具有一定的理论依据和工程意义,可以为实际红外观测站的静态部署和动态部署提供参考。 To solve the problem of management of infrared observation station,the paper researches the positioning accuracy under the different way of management,and proposes a new algorithm based on particle swarm optimization. Firstly,to solve the problem that optimization results depend on movement model,the paper analyzes the CRLB of multi-target tracking by infrared sensor under the ECEF coordinate system. Secondly,the paper transforms the problem of observation station managing to the model of nonlinear programming,and the CRLB offered by multi-infrared location is used as the goal function to solve the problem. Lastly,the paper takes the particle optimization to solve the model,avoids working out the gradient of goal function which is necessary in the traditional nonlinear programming. Simulation results show us the new optimization algorithm doesn't depend on the movement model of targets. And the conclusions in this paper can provide some reference for management of infrared observation station in practice.
机构地区 海军司令部
出处 《指挥控制与仿真》 2014年第3期40-43,共4页 Command Control & Simulation
关键词 观测站部署 粒子群优化 CRLB 非线性规划 management of observation station particle swarm optimization CRLB nonlinear programming
  • 相关文献

参考文献11

  • 1Hemandez, M. L., Kirubarajan, T., Bar-Shalom, Y. Multi Sensor Resource Deployment in the Presence of Clutter using Cram'er-Rao Lower Bounds [ J ]. IEEE Trans- actions on Aerospace and Electronic Systems, 2004, 40 (2) :399-416.
  • 2Hernandez, M. L. Optimal Sensor Trajectories in Bearings- Only Tracking[ C]. In Proceedings of the 7th International Conference on Information Fusion, Stockholm, Sweden, June 2004.
  • 3Horridge, P. R., Hernandez, M. L. Multi Static Radar Resource Management [ C ]. In Proceedings of SPIE, Signal and Data Processing of Small Targets, vol. 5204, San Diego, CA, 2003:583-594.
  • 4Tharmarasa.R, Kirubarajan.T, Hernandez, M. L. Large- scale Optimal Sensor Array Manageme-nt for Muhitarget Tracking [J].Submitted to IEEE Transactions on Systems, Man and Cybernetics, 2005.
  • 5Marrs, A. D. Asynchronous Multi-sensor Tracking in Clutter with Uncertain Sensor Locations Using Bayesian Sequential Monte Carlo methods[ C ] .In Proceedings of the IEEE Aero- space Conference, Big Sky, MT, 2001 (5) : 2171-2178.
  • 6Wang X, Ma J J, Wang S, et al. Distributed Energy Optimi- zation for Target Tracking in Wireless Sensor Networks [J]. IEEE Transactions on Mobile Computing, 2009, 9 (1) :73-86.
  • 7Zhang X. Decentralized Sensor-coordination Optimization for Mobile Multi-target Tracking in Wireless Sensor Net- works[ C] //IEEE Global Telecommunications Conference. Miami: IEEE, 2010: 1-56.
  • 8陈志敏,薄煜明,吴盘龙,于胜龙.混沌粒子群优化粒子滤波算法[J].电光与控制,2013,20(1):36-40. 被引量:7
  • 9Li Z M, Lei L. Sensor Node Deployment in Wireless Sensor Networks Based on Improved Particle Swarm Opti- mization [ C ]. Proceedings of 2009 IEEE International Conference on Applied Superconductivity and Electromag- netic Devices. Chengdu: IEEE, 2009: 215-217.
  • 10J. Kennedy, R. Eberhart. Particle Swarm Optimization [ J ]. IEEE International Conference on Neural Networks 4 (1995) : 1942-1948.

二级参考文献14

  • 1方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 2叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 3GORDON N,SALMOND D J,SMITH A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEEE Proceedings F:Radar and Signal Processing,1993,(02):107-113.
  • 4DOUCET A,GODSILL S,ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,(10):197-208.
  • 5KONG A,LIU J,WONG W H. Sequential imputations and Bayesian missing data problems[J].Journal of the American Statistical Association,1994,(425):278-288.
  • 6YU Yihua,ZHENG Xuanyuan. Particle filter with ant colony optimization for frequency offset estimation in OFDM systems with unknown noise distribution[J].Signal Processing,2011,(05):1339-1342.
  • 7LI Ying,BAI Bendu,ZHANG Yanning. Improved particle swarm optimization algorithm for fuzzy multi-class SVM[J].Journal of Systems Engineering and Electronics,2010,(03):509-513.doi:10.3969/j.issn.1004-4132.2010.03.024.
  • 8WAKANO J Y,HAUERT C. Pattern formation and chaos in spatial ecological public goodssames[J].Journal of Theoretical Biology,2011,(01):30-38.
  • 9ZHU Zhiliang,ZHANG Wei,WONG Kwokgwo. A chaosbased symmetric image encryption scheme using a bit-level permutation[J].Information Sciences,2011,(06):1171-1186.
  • 10XIANG Li,LIU Yu,SU Baoku. An evolutionary particle filter based EM algorithm and its application[J].Journal of Harbin Institute of Technology,2010,(01):70-74.

共引文献6

同被引文献39

  • 1李动,黄心汉.基于改进遗传算法的雷达网优化布站方法[J].华中科技大学学报(自然科学版),2013,41(S1):407-409. 被引量:7
  • 2高尚,杨静宇,吴小俊,刘同明.圆排列问题的蚁群模拟退火算法[J].系统工程理论与实践,2004,24(8):102-106. 被引量:9
  • 3Applegate DL, Bixby RE, Chvatal V, et al. The Traveling Salesman Problem: A Computational Study. Princeton: Princeton University Press, 2011.
  • 4Kennedy JF, Eberhart RC. Particle swarm optimization. Procof IEEE International Conference on Neural Networks. Perth, Australia. 1995. 1942 -1948.
  • 5Yah ZP, Deng C, Zhou J J, Chi DN. A novel two-subpopulation particle swam optimization. Proc. of 10th Intelligent Control and Automation. Beijing, China. 2012. 4113-4117.
  • 6Muruganandham A, Wahida Banu Dr RSD. Adaptive fractal image compression using PSO. Procedia Computer Science, 2010, 2: 338-344.
  • 7Ding W. A new method for image noise removal using chaos PSO and nonlinear ICA. Procedia Engineering, 2011, 24: 111-115.
  • 8Yu ZF, Li JW, Liu K. Radar emitter recognition based on PSO-BP network. AASRI Procedia, 2012, 1: 213-219.
  • 9Hu Y, Wang XH, PSO-based energy-balanced double cluster-heads clustering routing for wireless sensor networks. Procedia Engineering, 2011, 15: 3073-3077.
  • 10章义刚,王会颖.改进蚁群算法求解圆排列问题[J].机电工程,2008,25(5):92-95. 被引量:5

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部