期刊文献+

基于Powell搜索法的混合微粒群算法 被引量:3

A Hybrid Particle Swarm Optimization Algorithm Based on the Powell Search Method
下载PDF
导出
摘要 利用Powell搜索法求解精度高、收敛速度快和局部搜索能力强等优点,本文提出了一种与Powell搜索法相结合的改进微粒群算法实践.改进算法将微粒的搜索过程分为两阶段,第一阶段,将PSO算法的速度公式改进后进行搜索;第二阶段,将第一阶段的最后一代微粒作为Powell搜索法的初始点,让Powell搜索法与PSO算法交替进行.这样既克服了PSO算法易陷入局部最优的缺点,也大大提高了算法的求解精度和收敛速度,同时保持了微粒的多样性.仿真结果表明:同PSO算法相比,Powell-PSO算法具有较高的求解精度和较强的寻优能力,并且不论是对单峰函数还是多峰函数都能取得很好的优化效果. In this paper we propose a new improved particle swarm algorithm in combination with Powell search method-Powell-PSO.Improved algorithm of the search process of particle is divided into two stages.First stage,the speed of the standard particle swarm algorithm formula is improved and carried out in accordance with the improved formula search.Second stage,the last generation particles of in the first phase is used as the initial point of Powell search method,and the Powell search method and PSO algorithm are used to alternates search.New algorithms can overcome the drawback of trapping in local optimum particle swarm algorithm,and greatly improves the precision of the algorithm,and improves the convergence speed and keep the diversity of the particles.The simulation results show that compared with the standard particle group algorithm,Powell-PSO has higher precision and stronger optimization ability,and whether to unimodal function or multimodal function can gain better optimization effect.
出处 《山西师范大学学报(自然科学版)》 2014年第2期14-18,共5页 Journal of Shanxi Normal University(Natural Science Edition)
基金 山西省自然科学基资助项目(2011011021-3) 山西高校科技项目(20111093)
关键词 微粒群算法 POWELL搜索法 Powell-PSO算法 全局优化 particle swarm optimization powell search method powell-PSO global optimization
  • 相关文献

参考文献10

二级参考文献38

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2李灏,丁晓东.基于最速下降最优解参考的粒子群算法[J].计算机工程与应用,2006,42(16):44-45. 被引量:4
  • 3李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2060. 被引量:48
  • 4吴方.关于Powell方法的一个注[J].数学学报,1977,20:14-15.
  • 5邓乃扬 诸梅芳.关于Powell方法理论基础的探讨[J].科学通报,1979,24:433-437.
  • 6马仲番 魏权龄 等.数学规划讲义[M].中国人民大学出版社,1981..
  • 7Kennedy J,Eberhart R C.Particle Swarm Optimization[A].In:Proc IEEE Int Conf on Neural Networks[C].Piscataway:IEEE Service Center,1995:1942-1948.
  • 8Yoshida H,Kawata K,Fukuyama Y,et al.A particle swarm optimization for reactive power and voltage control considering voltage stability[A].In:Torres G L,Alves da Silva A P,Eds.Proc Intl Conf on Intelligent System Application to Power Systems[C].Brazil Rio de Janeiro,1999:117-121.
  • 9Van den Bergh F.An analysis of particle swarm optimizers[D].South Africa:University of Pretoria,2002.
  • 10Bratton D, Kennedy J. Defining a standard for particle swarm optimization[C]. IEEE Swarm Intelligence Symposium. Honolulu, 2007: 120-127.

共引文献35

同被引文献21

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部