摘要
以高阶的复系数Ginzburg-Landau方程为研究对象,采用分布傅里叶法,对存在于正常色散区域的呼吸孤子解的参数条件及分岔进行了讨论.同时也得到了呼吸孤子的双周期、四周期以及八周期等形式的解.
Taking the Ginzburg-Landau equation of high order complex coefficients as the object of study,the parameter conditions and bifurcation distributions of breathing soliton solution in the normal dispersion region breather solutions were discussed using Fourier method,also got the two-cycle,four-cycle,and eight cycles form solution of the breathing soliton were got.
出处
《山西师范大学学报(自然科学版)》
2014年第2期61-64,共4页
Journal of Shanxi Normal University(Natural Science Edition)
基金
山西大同大学科研基金项目(2011K5)
关键词
双周期分岔
耗散系统
呼吸孤子
double bifurcation
dissipative systems
breathing soliton