期刊文献+

l~∞(Z)到L~∞(R)上高斯基插值算子范数的估计

Estimation of the Norm for Gaussian Cardinal Interpolation Operator From l~∞(Z) To L~∞(R)
下载PDF
导出
摘要 研究lp(Z)到Lp(R)上高斯基插值算子£λ的算子范数‖£λ‖p(Lebesgue常数)的渐进行为.通过改进Sivakuma的证明技巧,对p=+∞建立了‖£λ‖∞的一个新的估计. In this paper,asymptotic behavior of Gaussian cardinal-interpolation operator £λfrom lp( Z) to Lp( R) is studied. The norm of this operator ‖£λ‖∞is called a Lebesgue constant. By improving Sivakuma's methods,the evaluation of ‖£λ‖∞is obtained for p = + ∞.
作者 桂绍辉
出处 《赣南师范学院学报》 2014年第3期1-5,共5页 Journal of Gannan Teachers' College(Social Science(2))
基金 江西省教育厅科技支撑计划
关键词 高斯基插值 估计 常数 Gaussian cardinal interpolation estimate constant
  • 相关文献

参考文献8

  • 1Riemenschneider,S.D.and Sivakumar,N..On cardinal interpolation by Gaussian radial-basis functions:Properties of fundamental functions and estimates for Lebesgue constants[J].J.Anal.Math.,1999,79:33-61.
  • 2Riemenschneider,S.D.and Sivakumar,N..Cardinal interpolation functions:A Survey[J].J.Analysis,2000,8:157-178.
  • 3Riemenschneider,S.D.and Sivakumar,N..Gaussian radial-basis functions:cardinal interpolation of and power-growth data[J].Advances in Computational Mathematics,1999,11:229-251.
  • 4Cao Hui,Liu Yongping,Lebesgue constants on Gaussian cardinal interpolation operators from into[J].Analysis Mathematica,2006,32:265-277.
  • 5Gui Shaohui,Liu Yongping,Strong asymptotic estimation of the Lesbegue constant of Gaussian cardinal interpolation operator[J].Journal of Beijing Normal University(Natural Science),2006,42(2):116-119.
  • 6Sivakumar,N.,A note on the Gaussian cardinal-interpolation operator[J].Proc.Edinburgh Math.1997,40(1):137-149.
  • 7Ter Morsche,H.G.,On the Lebesgue constants for cardinal L-spline interpolation[J].J.Approx.Theory,1985,45(3):232-246.
  • 8Gradshteyn,I.S.and Ryzhik,I.M.Table of integrals,series,and products[M].New York:Academic Press,1980.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部