摘要
对整数r>0,图G的一个r-条件染色是一个从顶点集V(G)到数集{1,2,…,k}的映射c,使得:1)相邻点获得的颜色不同;2)|c(N(v))|≥min {|N(v)|,r}。(其中N(v)代表v的邻点集)。使图G有一个正常的(k,r)-染色的最小k值称为G的条件色数。若图G的r-条件色数等于G的色数,则称图G为r-正常的。笔者给出了判断一个图为r-正常图的两个充分条件。
For a positive integer r,a r-conditional coloring of a graph G is a map c:V(G)→{1 ,2,…,k}, such that:1 )if u,v∈V(G)are adjacent vertices in G,then c(u)≠c(v);2)for any u∈V(G),|c(N(v))|≥min{|N(v)|,r}.(N(v)is the set of vertices which are adjacent to vertex v).The r-coloring chromatic number of G is the smallest k such that G has a proper(k,r)-coloring.A graph G is r-normal provided that the r-conditional chromatic number of G equals the chromatic number of G.Two conditions which are sufficient for a graph to be r-normal are given.
出处
《山东师范大学学报(自然科学版)》
CAS
2014年第3期4-6,共3页
Journal of Shandong Normal University(Natural Science)
基金
国家自然科学基金资助项目(11271365)
山东省自然科学基金资助项目(ZR2012AM005)
关键词
条件染色
条件色数
正常图
conditional coloring
conditional chromatic number
normal graph