期刊文献+

基于SVM和RBF神经网络的民航不安全事件组合预测方法 被引量:3

SVM and RBF neural network based hybrid prediction model for unsafe events of civil aviation
下载PDF
导出
摘要 为提高航空业安全水平,预测飞行过程中存在的主要事故风险,本文基于2002年2月至2014年2月的民航事故数据统计,采用SVM和RBF神经网络加权组合模型对民航不安全事件发生原因及飞行阶段事故数量进行了预测。通过对3种典型预测方法的均方根误差比较,证明了此方法的可行性与有效性,结论可为民航安全管理提供科学依据。 This paper predicts the number of civil aviation unsafe event factors and stages with SVM and RBF neural network weighted combination model to improve the level of aviation safety and predict major flight accident risk,which is based on the accident data from Feb.2002 to Feb.2014.Its feasibility and effectiveness are proved by the comparison for the root mean square errors of three typical prediction methods.This can provide a scientific reference for the administration of civil aviation security.
出处 《山东科学》 CAS 2014年第3期61-65,72,共6页 Shandong Science
关键词 不安全事件预测 SVM RBF神经网络 prediction of unsafe events support vector machine RBF neural network
  • 相关文献

参考文献13

二级参考文献42

  • 1肖争艳,陈彦斌.中国通货膨胀预期研究:调查数据方法[J].金融研究,2004(11):1-18. 被引量:121
  • 2李国强,刘玉姝.一种考虑初始缺陷影响的非线性梁单元[J].计算力学学报,2005,22(1):69-72. 被引量:20
  • 3程建伟.通货膨胀预测的几种方法[J].价格理论与实践,2006(3):48-49. 被引量:5
  • 4[3]Air Safety Week.Single Index Proposed to Measure Safe-ty of Aviation System,Air safety week[EB/OL],http://findartieles.com/p/articles/mi_mOUBT/is_35_17/ai_107767512,2003.09.15
  • 5Paul Edelstein. Commodity Prices, Inflation Forecasts, and Manetary Policy[C].Working Paper,2007,(1).
  • 6Liu K. Comparison of very short-term load forecasting technique[J]. IEEE Trans. Power Systems, 1996,11(2): 877-882.
  • 7Hippert H S, Pefreira C E, Souza R C. Neural network for short-term load forecasting: A review and evaluation[J].IEEE Trans. Power System. 2001,16(2): 44-54.
  • 8Muller K R, Smola A J, Ratsch G, et al.Prediction time series with support vector machines[C].In Proc of ICANN'97., Springer LNCS 1327, Bedin,1997, 999-1004.
  • 9Papadakis S E, Theocharis J B, Kiartzis S J, et al. A novel approach to short-term load forecasting using fuzzy neural net-works[J].IEEE Trans. Power Systems, 1998,13(2):480-492.
  • 10Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing[M].Cambridge, MA, MIT Press, 1997, 281-287.

共引文献363

同被引文献24

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部