期刊文献+

扰动变分不等式的序下半连续性

Lower Semicontinuity with Set-relations of Perturbed Generalized Vector Quasivational Inequality Problems
下载PDF
导出
摘要 对向量优化准则下集值映射(SMVOR)半连续性和集优化准则下集值映射(SMSOR)序半连续性进行了研究。通过举例指出了SMVOR下半连续与SMSOR序下半连续没有关系,在一定条件下由SMVOR上半连续性得到了SMSOR序下半连续。重点讨论了集序关系意义下广义向量拟变分不等式(GVQVI)的序下半连续性。通过对集序关系意义下序下半连续的进一步研究,得到了扰动变分不等式问题的解集在空间上序下半连续的充分条件,并用不同方法证明了该充分条件。 The semicontinuity of set-valued mapping under set-valued optimization rules and the lower semicontinuity with set-relations under set optimization rules have been studied. By some examples, one can find the semicontinuity of set-valued mapping under set-valued optimization rules has no rela- tions with the lower semieontinuity with set-relations under set optimization rules. It is easy to get the relation between the upper semicontinuity with the lower semicontinuity with set-relations. In addti- tion, the key point is discussing the lower semicontinuity with set-relations of GVQVI. By analyzing the lower semicontinuity with set-relations, one can conclude the sufficient conditions of the lower semicontinuity with set-relations of perturbed GVQVI and prove the sufficient condition by two differ- ent ways.
出处 《重庆理工大学学报(自然科学)》 CAS 2014年第6期122-125,共4页 Journal of Chongqing University of Technology:Natural Science
基金 广西教育厅科研立项项目(201106LX047)
关键词 集序关系 序下半连续 扰动变分不等式 半连续 set-relations lower semicontinuity with set-relations perturbed vector vational inequali-ty semicontinuous
  • 相关文献

参考文献11

  • 1Chen G Y,Li S J. Existence of Solutions for a Generalized Vector Quasivariational Inequality[ J]. Optim Theory Appl, 1996,90 (1) :321 -334.
  • 2Yang X Q, Goh C J. On Vector Variational Inequalities:Application to Vector Equilibria[ J ]. Optim. Theory Appl, 1997,95 (2) : 431 -443.
  • 3Li S J ,Zhang W Y. Hadarnard Well-posed Vector Optimization Problems[ J]. Optim Theory App1,2010,46:383 -393.
  • 4曾静.向量优化及相关问题解的存在性和适定性研究[D].重庆:重庆大学,2011.
  • 5陈光亚.向量优化问题某些基础理论及其发展[J].重庆师范大学学报(自然科学版),2005,22(3):6-9. 被引量:7
  • 6Kuroiwa D. On Set-valued Optimization [ J]. Nonlinear Anal ,2001,47 : 1395 - 1400.
  • 7Kuroiwa D. The natural Criteria in Set-valued Optimization [ J ]. RIMS Kokyuroku, 1998,1031:85 - 90.
  • 8Jahn J, Ha T X D. New Order Relations in Set Optimization[ J ]. Optim. Theory App1,2011,148 :209 -236.
  • 9Maeda T. On Optimization Problems with Set-valued Objective Maps:Existence and Optimality[ Z ]. Optim Theory Appl,2011.
  • 10Aubin J P, Ekland I. Applied Nonlinear Analysis [ M ]. New York : NY, 1984:518.

二级参考文献9

  • 1CHEN G Y. Existence of Solutions for a Varional Ineguality: An Extension of Hartman-Stampacchia Theorem[J]. J Optim Theory Appl, 1992, 74: 445-456.
  • 2CHEN G Y, HUANG X X. A Unified Approach to the Exsting Types of Variational Principle for Vector Valued Functions[J]. Mathematical Methods of Operations Research, 1998, 48: 349-357.
  • 3CHEN G Y, HUANG X X, YANG X Q. Vector Optimization: Set-valued and Variational Analysis, Lecture Notes in Economics and Mathematical Systems[M]. London: Springer, 2005.
  • 4BLUM E, OETTLI W. From Optimization and Variational Inegualities to Equilibrium Problem[J]. The Mathematics Student, 1994, 63: 123-145.
  • 5CHEN G Y, YANG X Q. The Vector Complementarity Problem and Its Equivalence with the Weak Minimal Element in Ordered Spaces[J]. J Math Anal Appl, 1990,153: 136-156.
  • 6EKELAND I. On Variational Principle[J]. J Math Anal Appl, 1974, 47: 324-353.
  • 7GERTH C, WEIDNER P. Nonconvex Separation Theorems and Applications in Vector Optimizition[J]. J Optim Theory Appl, 1990, 67: 297-320.
  • 8GIANNESSI F. Theorems of Alternative, Quadratic Programs and Complementary Problems[A]. COTTLE R W, GIANNESSI F, LIONS J L. Veriational Inequalities and Complementary Problems[C]. NewYork: Wiley, 1980.
  • 9YANG X Q. Vector Complementary and Minimal Element Problems[J]. J Optim Theory Appl,1993, 77: 483-495.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部