期刊文献+

随机微分包含数值解的收敛性(英文)

Convergence of numerical solutions for stochastic differential inclusions
下载PDF
导出
摘要 讨论在全局Lipschitz条件和线性增长条件下,随机微分包含欧拉方法的数值解的强收敛性。给出在同样条件下随机微分包含解的存在性,以及随机微分包含欧拉方法的数值格式,证明在全局Lipschitz条件和线性增长条件下,随机微分包含欧拉方法的数值解收敛到解析解。数值实例验证了结论的正确性。 The main purpose is to investigate the strong convergence of the Euler method to stochas- tic differential inclusions (SDIs) under global Lipschitz condition and the linear growth condition. It is first shown that SDIs with the initial value have a solution under global Lipschitz condition and the linear growth condition. Then the convergence of numerical solutions to SDIs under the same conditions is established. Finally, an example is provided to illustrate the theory results.
作者 张玲
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2014年第3期344-350,共7页 Journal of Natural Science of Heilongjiang University
基金 Supported by the Science and Technology Research Projects of Heilongjiang Provincial Education Department(11553003) the Research Fund for the Doctoral Program of Daqing Normal University
关键词 随机微分包含 线性增长条件 全局Lipschitz条件 Hausdroff距离 欧拉方法 stochastic differential inclusion the linear growth condition global Lipschitz condi-tion Hausdorff metric Euler-Maruyama method
  • 相关文献

参考文献19

  • 1FRIEDMAN A. Stochastic differential equations and applications[ M ]. New York: Academic Press, 1975.
  • 2KHASMINSKII R, Stochastic stability of differential equations[M].2nd ed. Berlin Heideberg: Springer-Verlag, 2012.
  • 3WANG Peng, HANYue-cai. Split-step Backward Milstein methods for stiff stochastic systems [ J ]. Journal of Jilin University ( Science Edition ) , 2009, 47(6) : 1150 - 1154.
  • 4张玲.中立型随机变延迟微分方程数值解的收敛性(英文)[J].黑龙江大学自然科学学报,2012,29(1):65-71. 被引量:10
  • 5MAO Xue-rong. A note on the LaSalle-type theorems for stochastic differential delay equations[ J]. Journal of Mathematical Analysis and Applica- tions, 2002, 268(1): 125-142.
  • 6MAO Xue-rong, RASSIAS M J. Khasminskii-type theorems for stochastic differential delay equations [ J ]. Stochastic Analysis and Applications, 2005, 23(5) : 1045 -1069.
  • 7MAO Xue-rong. Stability of stochastic differential equations with respect to semimartingales [ M ]. London: Eongman Scientific and Technical, 1994.
  • 8MAO Xue-reng. Exponential stability of stochastic differential equations[ M]. New York: Marcel Dekker, 1994.
  • 9MAO Xue-rong. Stochatic differential equations and applications[ M]. Chichester: Horwood Publishing, 1997.
  • 10MAO Xue-rong, YUAN Cheng-gui. Stochastic differential equations with Markovian switching[ M ]. London: Imperial College Press, 2006.

二级参考文献14

  • 1MAO Xue-rong, SABANIS S. Numerical solutions of SDDEs under local Lipschitz condition[J]. Journal of Computational and Applied Mathematics, 2003,151:215 -227.
  • 2MAO Xue-rong. Numerical solutions of SFDEs under local Lipschitz condition [ J ]. LMS Journal Computational Mathematics, 2003,6:141 - 161.
  • 3YUAN Cheng-gui, MAO Xue-rong. Convergence of the Euler-Maruyama method for stochastic differential equation with Markovian switching[ J ]. Mathematics and Computer in Simulation, 2004,64:223 - 235.
  • 4LI Rong-hua, HOU Ying-min. Convergence and stability of numerical solutions to SDDEs with Markovian switching[ J]. Applied Mathematics and Computation, 2006,175 : 1080 - 1091.
  • 5MAO Xue-rong, YUAN Cheng-gui. Approximations of the Euler-Maruyama type for SDEwMSs under non-Lipschitz condition[ J]. Journal of Computational and Applied Mathematics, 2003,151:215 - 227.
  • 6LI Rong-hua, MENG Hong-bing, DAI Rong-hong. Convergence of numerical solutiong to SDDEs with poisson jumps[ J ]. Journal of Computational and Applied Mathematics, 2003,172 : 584 - 602.
  • 7LI Rong-hua, CHANG Zhao-guang. Convergence of numerical solutiong to SDDEs with poisson jumps and Markovian switching [ J ]. Journal of Computational and Applied Mathematics, 2007,184 : 451 -463.
  • 8BUCHWAR E. Introduction of the numerical analysis of SDDEs[ J ]. Journal of Computational and Applied Mathematics, 2000,125:297 -307.
  • 9LAMBA H, SEAMAN T. Mean-square stability properties of an adaptive time-steping SDE solver[ J ]. Journal of Computational and Applied Mathematics, 2006,194 : 245 - 254.
  • 10CARLETH M. Numerical of stochastic differential problems in the biosciences [ J ]. Journal of Computational and Applied Mathematics, 2000, 185 : 422 -440.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部