期刊文献+

基质与分子筛的协同作用及重油分子裂化历程研究 被引量:9

STUDY ON SYNERGY OF ZEOLITE AND MATRIX AND PROCESS OF HEAVY OIL CRACKING
下载PDF
导出
摘要 在固定床反应器上,以磷酸改性的含氧化铝高岭土材料为基质,以ReUSY为分子筛组分,通过基质与分子筛分层填装以及部分机械混合的方式,考察不同装填顺序及混合程度对产品分布的影响,研究了催化裂化催化剂基质与分子筛之间的相互作用以及重油分子裂化反应历程。试验结果表明:基质对于重油大分子存在预裂化作用,重油分子首先与基质接触时,其转化率以及总液体收率均高于先经过分子筛体系;分子筛与基质各自所具备的特点均无法有效促使重油分子转化,当二者相互混合、共同作用于重油裂化时,目的产物收率明显增多且氢的分配也更为合理,说明基质与分子筛表面活性位存在良好的协同关系;基质及分子筛表面发生的重油裂化反应以经典裂化机理为主,但存在质子裂化路径。 The synergy of zeolite and matrix and the VGO cracking routes were studied by a fixed- bed reactor in which ReUSY zeolite and phosphoric acid modified alumina kaolin as matrix were loaded in different layered or mixed packing ways. It is observed that contacting the matrix first for heavy oil results in a higher conversion compared with that of contacting zeolite first. However,neither the molecular sieve nor the matrix along can make the heavy oil convert effectively. This indicates the preliminary cracking functions of the matrix, resulting in synergistic effect of zeolite and matrix. With the mixing degree of zeolite and matrix increase, the conversion and the liquid product yield rises significantly, while the yields of dry gas and coke decrease slightly. The synergy effect of mixing zeolite and matrix was also discussed in view of the hydrogen distribution in dry gas and LPG products. The data obtained in this work well fit the classic cracking mechanism, but existing protolytic cracking path which contributes to a rise in dry gas yield.
出处 《石油炼制与化工》 CAS CSCD 北大核心 2014年第7期7-12,共6页 Petroleum Processing and Petrochemicals
基金 中国石油天然气股份有限公司科学研究与技术开发项目(10-01A-01-01-01) 青岛市民生计划项目(13-1-3-126-nsh)
关键词 催化裂化 协同作用 质子裂化 预裂化 catalytic cracking synergistic effect protolytic cracking preliminary cracking
  • 相关文献

参考文献10

  • 1山红红,李春义,钮根林,杨朝合,张建芳.流化催化裂化技术研究进展[J].石油大学学报(自然科学版),2005,29(6):135-150. 被引量:31
  • 2Khattaf S,de Lasa H. The role of diffusion in alkyl-benzenes catalytic cracking[J]. Applied Catalysis A : General, 2002,226 (1)..139-153.
  • 3Nace D M. Catalytic cracking over crystalline aluminosili- cates. Microreactor study of gas oil cracking[J]. Industrial Engineering Chemistry Product Research and Development, 1970,9(2) :203-209.
  • 4Otterstedt J E,Zhu Y M,Sterte J. Catalytic cracking of heavy oil over catalysts containing different types of zeolite Y in ac- tive and inactive matrices[J]. Applied Catalysis, 1988,38 (1) : 143-155.
  • 5Andersson S,Myrstad T. Optimum properties of RFCC cata- lysts[J]. Studies in Surface Science and Catalysis, 2001,134: 227-238.
  • 6Chen Wenzhe, Han Dongmin, Sun Xiaohui, et al. Studies on the preliminary cracking of heavy oils: Contributions of vari- ous factors[J]. Fuel, 2013,106 : 498-504.
  • 7Alerasool S,Doolin P K, Hoffman J F. Matrix acidity deter- mination: A bench scale method for predicting resid cracking of FCC catalysts[J]. Industrial b- Engineering Chemistry Re- search, 1995,34 (2) : 434-439.
  • 8Khattaf S,de Lasa H. Activity and selectivity of fluidized cat- alytic cracking catalysts in a riser simulator:The role of Y-ze- olite crystal size[J]. Industrial b- Engineering Chemistry Re- search, 1999,38(4) : 1350-1356.
  • 9Li Chunyi, Yang Chaohe, Shan Honghong. Maximizing pro- pylene yield by two-stage riser catalytic cracking of heavy oil [J]. Industrial Engineering Chemistry Research, 2007,46 (14) :4914-4920.
  • 10Kotrel S,Kn6zinger H,Gates B C. The Haag-Dessau mecha- nism of protolytie cracking of alkanes[J]. Microporous and Mesoporous Materials, 2000,35 : 11-20.

二级参考文献75

共引文献30

同被引文献48

引证文献9

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部