期刊文献+

基于粒子群优化算法的伺服系统测试点优选策略研究 被引量:1

Test Points Optimization Strategy Research for Antenna Servo System Based on PSO
下载PDF
导出
摘要 针对某型雷达天线伺服系统测试点多,故障诊断需测试较多测试点而导致的故障诊断时间长,效率低的问题,提出了一种基于粒子群优化的测试点优选方法;该方法首先基于系统所需的故障诊断率和所能容忍的故障虚警率构建目标优化函数,其次利用粒子群算法对目标函数进行优化以选择最少的测试点完成故障定位和诊断;该方法避免了对所有测试点的测试,节省了测试时间,可在最短的时间内完成测试点的优选;仿真实验验证了算法的有效性。 There are many test points in radar antenna servo test system. These many test points lead to the long test time, which causes the low fault diagnosis efficiency. To solve this problem, a test points optimization method based on PSO is researched. The object function is constructed with the needed fault diagnosis probability and fault false alarm probability. Then the PSO algorithm is used to find the least test points. This method avoids the test of all the test points, save the test time and could finish the test points detection in shorter time. Simulation experiment validates the availability of this algorithm.
出处 《计算机测量与控制》 北大核心 2014年第6期1977-1978,1986,共3页 Computer Measurement &Control
关键词 测试点 优化算法 优选策略 test point optimization algorithm optimization strategy
  • 相关文献

参考文献4

二级参考文献30

  • 1刘建华,樊晓平,瞿志华.一种惯性权重动态调整的新型粒子群算法[J].计算机工程与应用,2007,43(7):68-70. 被引量:49
  • 2纪震,廖惠连,昊青华.粒子群算法及应用[M].北京:科学出版社,2010.
  • 3古天祥,王厚军,习友宝,等.电子测量[M].北京:机械工业出版社,2006.
  • 4Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C] ffProeeedings of the Sixth International Symposium on Micro Machine and Human Science. Japan: Na-goya, 1995: 39-43.
  • 5Kennedy J, Eberhart R C. Particle swarm optimization[C] ff Proceedings of the IEEE International Conference on Neural Networks. Piseataway: IEEE, 1995 1942-1948.
  • 6Shi Y,Eberhart R C. A modified particle swarm optimizer[C]// IEEE World Congress on Computational Intelligence. Piscat- away: IEEE, 1998 : 69-73.
  • 7Banerjee A, Burlina P, Chellappa R. Adaptive target detection in fo liage-penetrating SAR images using alpha-stable models [J]. IEEE Trans. on Image Processing, 1999, 8(12): 1823-1831.
  • 8Tison C, Nicolas J M, Tupin F, et al. New statistical model for Markovian classification of urban areas in high-resolution SAR images [J].IEEE Trans. on Geoscience and Remote Sensing, 2004, 42(10): 2046-2057.
  • 9Achim A, Kuruoglu E E, Zerubia J. SAR image filtering based on the heavy-tailed Rayleigh model [J]. IEEE Trans. on Image Processing, 2006, 15(9): 2686-2693.
  • 10Jao J K. Amplitude distribution of composite terrain radar clut- ter and the K distribution [J]. IEEE Trans. on Antennas and Propagation, 1984, 32(10) : 1049 - 1062.

共引文献27

同被引文献13

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部