期刊文献+

基于推荐质量的信任感知推荐系统 被引量:2

Quality of Recommendation Based Trust-aware Recommender System
下载PDF
导出
摘要 推荐系统在解决信息过载方面已经取得了很大的成功,同时也存在数据稀疏、冷启动等问题。如何在评分数据稀疏的情况下获得满意的推荐成为推荐系统亟待解决的问题。将信任引入推荐系统成为解决上述问题的有效方法之一。已有的信任感知推荐系统大多基于布尔型信任关系,且没有考虑信任的领域相关性。在服务选择领域,服务请求者依据QoS(quality of service)选择服务。联想到在服务推荐领域推荐请求者可以依据推荐质量(quality of recommendation,QoR)选择推荐用户,提出了推荐质量(QoR)的概念和基于推荐质量的信任感知推荐系统。QoR的属性包含评价相似度、领域信任值、领域相关度和亲密程度,利用信息熵方法可确定各属性的权重。仿真表明该方法提高了推荐系统在数据稀疏情况下的精确度和评分覆盖率,有效提高了冷启动用户的召回率,在一定程度上解决了冷启动问题。 Recommender system has achieved great success in dealing with information overload,meanwhile has some problems,such as data sparse,cold start and so on.How to get satisfied recommendation under the circumstance of data sparse is urgent for recommender system.Introducing trust into recommender system is an efficient way to resolve the above problems.Most of existing trust-aware recommender systems are based on Boolean trust relationship,and do not take domain correlation of trust into account.In the field of service selection,service requestor selects services based on QoS(quality of service).Inspired by QoS,recommendation requestor can find recommender based on QoR(quality of recommendation).Thus we put forward the concept of QoR and QoR based trust-aware recommender system.The attributes of qor include user rating similarity,domain trust,domain relative degree and social intimacy degree,whose weights are determined by method of information entropy.Empirical evaluation shows that our method improves the precision and ra-ting coverage of recommender system under condition of data sparse,above all,effectively improves the recall rate of cold start user,resolving the cold start problem to some extend.
作者 王海艳 周洋
出处 《计算机科学》 CSCD 北大核心 2014年第6期119-124,135,共7页 Computer Science
基金 国家自然科学基金(61201163) 江苏省自然科学基金滚动资助项目(BK2011072) 江苏省博士后科研资助计划项目(1002005C)资助
关键词 服务推荐 推荐质量 信任 Service recommendation Quality of recommendation Trust
  • 相关文献

参考文献20

  • 1Zhang L-J,Zhang J,Cai H.Services computing[M].Springer and Tsinghua University Press,2007.
  • 2Kang Guo-sheng.AWSR:Active Web Service Recommendation Based on Usage History[C]// 19th International Conference on Web Services(ICWS).2012:186-193.
  • 3Sarwar B,Karypis G,Konstan J,et al.Analysis of recommendation algorithms for e-commerce[C]//Presented at the Proceedings of the 2nd ACM Conference on Electronic Commerce.Minneapolis,Minnesota,United States,2000.
  • 4Sinha R,Swearingen K.Comparing recommendations made by online systems and friends[C]// Proceedings of the DELOSNSF Workshop on Personalization and Recommender Systems in Digital Libraries.Puerto Vallarta,Mexico,2001.
  • 5Crandall D,Cosley D,Huttenlocher D,et al.Feedback effects between similarity and social influence in online communities[C]//KDD 2008.2008:160-168.
  • 6Massa P,Bhattacharjee B.Using trust in recommender systems:An experimental analysis[C]//Proceedings of iTrust2004 International Conference.2004:221-235.
  • 7Chen Xiao-cheng,Liu Run-jia,Chang Hui-you.Research of collaborative filtering recommendation algorithm based on trust propagation model[C]// Computer Application and System Modeling (ICCASM).Taiyuan,2010.
  • 8Jamali M,Ester M.TrustWalker:A Random Walk Model for Combining Trust-based and Item-based Recommendation[C]//KDD 2009.Paris,France,2009.
  • 9Jamali M,Ester M.Using a Trust Network to Improve Top-N Recommendation[C]// Proceedings of the third ACM Conference on Recommender Systems.2009:181-188.
  • 10Zarghami A,Fazeli S,Dokoohaki N,et al.Social Trust-aware Recommendation System:A T-Index Approach[C]//Proceedings of the IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.2009:85-90.

二级参考文献87

  • 1刘玉龙,曹元大,李剑.一种新型推荐信任模型[J].计算机工程与应用,2004,40(29):47-49. 被引量:15
  • 2何光辉,魏曙光,王蔚韬.改进的聚类邻居协同过滤推荐算法[J].计算机科学,2004,31(11):147-149. 被引量:6
  • 3张巍,朱艳春.C2C网上拍卖中的信任计算模型研究[J].计算机工程与应用,2006,42(13):5-7. 被引量:18
  • 4陈建刚,王汝传,王海艳.网格资源访问的一种主观信任机制[J].电子学报,2006,34(5):817-821. 被引量:14
  • 5李景涛,荆一楠,肖晓春,王雪平,张根度.基于相似度加权推荐的P2P环境下的信任模型[J].软件学报,2007,18(1):157-167. 被引量:115
  • 6网购渐成主流,淘宝网上半年成交157亿[OL].http://tech.com.com/2007-07-17/06MA/30846418-03.html,2007.
  • 7J Rutter. From the sociology of trust towards a sociology of ' E- trust' [J].International Journal of New Product Development and Innovation Management, 2001:371 -385.
  • 8A Jφsang, S Hird, E Faccer. Simulating the effect of reputation systems on e-Markets [A]. In Proc. of the First International Conference on Trust Management[ C ]. Berlin: Springer-Verlag, 2003.
  • 9P Bonatti, P Samarati. Regulating service access and information release on the web[A]. In Proc, of the 7th ACM conference on Computer and communications security [C ]. New York: ACM Press, 2000.134 - 143.
  • 10R Gavriloaie, et al.No registration needed:How to use declarative policies and negotiation to access sensitive resources on the semantic web[A]. In Proc. first European Semantic Web Symposium[ C]. Berlin: Springer-Verlag, 21304.342 - 356.

共引文献114

同被引文献48

  • 1林文龙,刘业政,姜元春.Web浏览预测的Markov模型综述[J].计算机科学,2008,35(1):9-14. 被引量:7
  • 2Pazzani M J. A framework for collaborative, con-tent-based and demographic filtering [J], Artif In- tell Rev, 1999, 13 (5-6) z 393.
  • 3Lee T Q, Park Y, Park Y. A time-based approach to effective recommender systems using implicit feedback [- J 7. Expert Syst Appl, 2008, 34 (4) . 3055.
  • 4Pan W K, Chen L. GBPR: group preference based Bayesian personalized ranking for one-class collabo- rative filtering [C] //Proceedings of the 23rd Inter- national Conference on Artificial Intelligence. Bei- jing, China: ACM, 2013.
  • 5孔庆超,毛文吉.互联网用户行为的建模与预测[EB/OL]. (2012-09). [2015-11-01]. http.//www. caa. org. cn/ccaa, php? to = ccaa/indextext, action? Aid=29.
  • 6Manavoglu E, Pavlov D, Giles C L. Probabilistic user behavior models [C] //Proeeedings of the 3rd IEEE International Conference on Data Mining. Melbourne, Florida: IEEE, 2003.
  • 7Peng H K, Zhu J, Piao D, etal. Retweet modeling using conditional random fields [C] //Proceedings of 2011 IEEE llth International Conference on Data Mining Workshops. Vancouver, IEEE, 2011.
  • 8Huang Z, Zeng D D, Chen H. Analyzing consumer- product graphs: Empirical findings and applications in recommender systems [J]. Manage Sci, 2007, 53 (7) : 1146.
  • 9Zhang Y C, Blattner M, Yu Y K. Heat conduction process on community networks as a recommenda- tion model [J]. Phys Rev Lett, 2008, 99 (15) : 12505.
  • 10Park Y, Park S, Jung W, et al. Reversed CF. a fast collaborative filtering algorithm using a k-nea- rest neighbor graph [J]. Expert Syst Appl, 2015, 42 (8): 4022.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部