摘要
以小概率事件风险识别为研究对象,提出一个基于残余抗原学说的动态记忆风险识别模型DMRIM。DMRIM针对小概率事件风险的无规则等特点,将风险的强度和频度直观地、动态地映射为残余抗原的浓度,以残余抗原刺激免疫记忆、指导抗体进化、控制识别器的生命周期,突破了传统的记忆细胞生命周期,实现了识别器分布自制,提高了小概率事件的辨识能力。仿真实验表明,DMRIM充分体现免疫记忆的动态性,有效地识别小概率事件,其可行性在实际应用中得到了验证。
The paper focused on the risk identification of small probability events.A Residual Antigen based Dynamic Memory Risk Identification Model DMRIM was proposed.As small probability events have no rules to follow,the intensity and frequency of risk is intuitively and dynamically mapped to the concentration of residual antigen by DMRIM.By using residual antigent,DMRIM stimulates immune memory,guides antibody evolution and controls the life-cycle of the detector.It breaks through traditional memory cell life-cycle and realizes distribution and self-made of the detector,thereby improving recognition of small probability events.The simulation experiments prove that DMRIM achieves dynamic memory and recognize small probability events effectively.Its feasibility is verified in practical application.
出处
《计算机科学》
CSCD
北大核心
2014年第6期208-213,共6页
Computer Science
基金
上海市科委"科技创新行动计划"重点项目(13511504803)
上海高校青年教师培养资助计划(ZZSD12060)
上海大学创新基金(SDCX2012017)资助
关键词
残余抗原
免疫记忆
动态风险识别
小概率事件
Residual antigen
Imunne memory
Dynamic risk identification
Small probability