摘要
将基于像素MRF分割方法拓展到基于地物目标几何约束的区域MRF分割,提出了一种基于区域和统计的纹理影像分割方法,其基本思想是利用Voronoi划分技术将影像域划分为若干子区域。在此基础上,采用二值高斯马尔科夫随机场(BGMRF,bivariate Gaussian Markov random field)模型,静态随机场模型和Potts模型从邻域、区域及全局层次描述影像的纹理结构,并将该纹理结构模型纳入贝叶斯框架;依据贝叶斯定理构建纹理影像分割模型;利用metropolis-hastings(M-H)算法进行模型参数估计,并依据最大后验概率(MAP,maximum a posterior)准则进行优化,从而完成纹理影像分割。为了验证所提出方法的正确性,分别对合成纹理影像,真实纹理影像及遥感影像进行了分割实验,定性和定量的测试结果验证了提出方法的有效性、可靠性和准确性。
A regional and statistical based algorithm for texture image segmentation was proposed. The Voronoi tessella- tion was used for partitioning the domain of an image into sub-regions corresponding to the components of homogenous regions, to which the texture image needs to be segmented. Bivariate Ganssian Markov random field (BGMRF) model, static random field, and potts model were employed to characterize the interactions between two neighbor pixel pairs in a sub-region, and among sub-regions, respectively. Following Bayesian paradigm, a posterior distribution, which models the texture segmentation for a given texture image, was obtained. A metropolis-hastings algorithm was designed for simulating the posterior distribution. Then, texture segmentation was obtained by maximum a posterior (MAP) scheme. The proposed algorithm was tested with both of synthesized and real texture images. The results are qualitatively and quantitatively evaluated and show that the proposed algorithm works well on both of texture images.
出处
《通信学报》
EI
CSCD
北大核心
2014年第6期82-91,共10页
Journal on Communications
基金
国家自然科学基金资助项目(41301479
41271435)
对地观测技术国家测绘地理信息局重点实验室开放基金资助项目(K201204)
国家海洋局海洋溢油鉴别与损害评估技术重点实验室开放研究基金资助项目(201211)~~
关键词
纹理分割
VORONOI划分
二值高斯马尔科夫随机场
贝叶斯定理
最大后验概率
texture segmentation
Voronoi tessellation
bivariate Gaussian Markov random field (BGMRF)
Bayesianinference
maximum a posterior (MAP)